Высокопрочный бетон (сверхпрочный, высокой прочности)

Высокопрочный бетон (сверхпрочный, высокой прочности)

Брусчатка и тротуарная плитка


ООО «Арена»
г. Ижевск, ул. Маяковского 13
Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Телефон: (3412) 51-22-73
Факс: (3412) 51-22-73

Высокопрочный бетон, сверхпрочный бетон

1. Уровень развития и нормативные документы

Основной тенденцией в строительстве является использование бетона с высоким пределом прочности при сжатии. В настоящее время высокопрочным считается бетон, предел прочности при сжатии которого находится выше общепринятого уровня и составляет более 60 Н/мм 2 . При применении обычных исходных веществ и способов укладки создаются строительные конструкции с пределом прочности при сжатии до 150 Н/мм . В наши дни ведется разработка строительных растворов и бетонов с пределом прочности до 800 Н/мм 2 .

Термин «сверхпрочный бетон» указывает на то, что при различном использовании критерии долговечности имеют первостепенное значение и, соответственно, представляют интерес для определения прочности, смотри таблицу 1. Так как сопротивление бетона внешним воздействиям в значительной степени определяется особо плотной структурой, то с точки зрения бетонной технологии, как правило, нет различия между высокопрочным и сверхпрочным бетоном. Иногда понятие «сверхпрочный бетон» используется в отношении других бетонов, состав и свойствам которых не соответствуют общепринятым стандартам, например, самоуплотняющийся бетон. Эти виды бетона в спецификации не рассматриваются. Во внимание принимается обычный высокопрочный бетон с классами прочности от C 55/67 до C 100/115, а также легкий высокопрочный бетон с классами прочности от LC 55/60 до LC 80/88. В рамках стандарта высокопрочный бетон может использоваться для производства неармированного бетона, железобетона и предварительно напряженного бетона. Для использования бетона классов

Таблица 1: Определение высокопрочного и сверхпрочного бетона

предел прочности при сжатии > 60 Н/мм 2

бетоны, разработанные в соответствии со специальными высокими требованиями к использованию,

например непроницаемость, сопротивление физическому или химическому воздействию прочность

преимущественные области применения

прочности C 90/105, C 100/115, LC 70/77 и LC 80/88 требуются общие допуски строительного надзора, а в отдельных случаях разрешения. Новое поколение норм пришло на смену директиве по высокопрочному бетону, которая дополнила стандарт DIN 1045:1988 для обычного бетона классами прочности с B 65 по B 115. Для переходного периода до конца 2004 года, определенного строительным надзором, могут использоваться на выбор как старые, так и новые поколения норм и стандартов.

2.Основные положения по выбору исходных веществ

2.1 Водоцементное отношение

При производстве высокопрочного бетона учитывается коэффициент водоцементного отношения 2 мм — ближе к кривой A. При этом содержание мелкодисперсной взвеси в зернистом заполнителе должно быть низким. По причине отсутствия продолжительного опыта в стандарте [2] определено использование зернистого заполнителя в отношении щелочных реакций.

2.4 Тонкомолотые добавки

Типичным отличием высокопрочного бетона от бетона обычной прочности наряду с низким водоцементным отношением является добавление силикатной пыли s (называемой также кремнеземная пыль и микросилика). Однако бетон с классом прочности C 55/67 и C 60/77 может производиться и без добавления кремнеземной пыли. Кремнеземная пыль, средний размер частиц которой соответствует одной десятой среднего размера частиц цемента, представляет собой побочный продукт, образующийся в процессе очистки отработанных газов при производстве кремния и феррокремния. Использование кремнезема в бетоне регулируется общими допусками, выданными органами строительного надзора, или европейскими техническими допусками. В рамках Европейской стандартизации допуск заменяется стандартом DIN EN 13263. Действие кремнеземной пыли в бетоне основывается на трех эффектах: заполнение объема пор между частицами цемента, цементный камень приобретает более плотную структуру,
— пуццолановая реакция с гидроксидом кальция, повышающая прочность цемента,
— улучшение связи между зернистым заполнителем и цементным камнем.

Таблица 2: Общие правила использования кремнеземной пыли s и летучей золы f

CEM II-S
CEM II-T
CEM II/A-LL CEM III/A

цемент с
кремнеземной
пылью в
качестве
основного
компонента
все другие марки цемента

не допустимо использование кремнеземной пыли в качестве тонкомолотой добавки

≤ 0,15 для CEM II/A-D

не допустимо общее использование летучей золы и кремнеземной пыли

Максимальное количество добавляемой кремнеземной пыли, необходимое для обеспечения долговечности бетона (антикоррозионная защита арматуры), составляет 11 % от массы цемента. При производстве бетона возможно одновременное использование кремнеземной пыли и летучей золы, однако при этом ограничено их количество, см. таблицу 2.
Кремнеземная пыль используется в виде порошка (спрессованная, непрессованная) и в виде суспензии. По причине легкости и удобства в использовании применяется, как правило, суспензия кремнеземной пыли, например, в пропорции 50 % твердого вещества и 50 % воды. Бетон, в состав которого входит кремнеземная пыль, имеет темный цвет. Светлый высокопрочный бетон производится при добавлении кремнеземной кислоты (наносилика) или метакаолина. Кремнеземная кислота может использоваться в качестве добавки в бетон (стабилизатор).

2.5 Добавки

Укладка бетона с очень низкой теплотой гидратации не возможна без добавления пластификаторов или разжижителей. Надежная укладка бетонной смеси на строительной площадке предполагает мягкую, в лучшем случае текучую консистенцию (например, F4, F5). При снижающемся водоцементном отношении повышается количество добавляемых веществ. Имеется положительный опыт использования разжижителей на основе поликарбоксилата или на основе комбинации смол из нафталина и меламина. Для обеспечения достаточного времени укладки в бетонную смесь целесообразно добавлять замедлитель.
Количество добавляемых добавок необходимо ограничивать
— до 70 г/кг, соответственно до 70 мл/кг цемента при дозировании разжижителя и
— до 80 г/кг, соответственно до 80 мл/кг цемента при дозировке нескольких видов добавок.

2.6 Состав бетонной смеси

Во время производства высокопрочного бетона необходимо проводить контроль предусмотренных исходных веществ (вид, производитель, место добычи). При этом следует учитывать добавление разжижителей на строительной площадке.
В большинстве случаев проектирование высокопрочного бетона осуществляется на основании уже созданных бетонных смесей. В таблице 3 представлены составы бетонных смесей с различными классами прочности, дающими представление об исходных данных для предварительных исследований или первичных испытаний. В зависимости от исходных веществ в значительной степени меняется состав бетонной смеси.

Таблица 3: Исходные данные по составу бетонной смеси

Содержание цемента при

Содержание кремнеземной пыли (твердое вещество) s

Содержание летучей смолы f

от 4 л/м3 до 10 л/м3 поликарбоксилат, от 10 л/м3 до

20 л/м3 разжижитель на основе меламина и нафталина

Содержание
зернистого
заполнителя

Эквивалентное водоцементное отношение (w/z)eq согласно уравнению (1)

Растекаемость (добавление разжижителя через 45

45. 55
55. 65
45. 55

минут после изготовления смеси)

Плотность свежеприготовленной бетонной смеси

Предел прочности при сжатии (кубик с длиной ребра 150 мм, выдерживание в воде)

Для определения необходимого эквивалентного водоцементного отношения можно использовать рис. 1, при этом учитывается влияние добавок на прочностные характеристики:

Высокое содержание мелкодисперсной взвеси ведет к образованию клейких бетонов,
плохо подвергаемых укладке, и оказывает отрицательное влияние на характеристики бетона при деформации. Поэтому в высокопрочных бетонах ограничено максимально допустимое содержание мелкодисперсной взвеси и мелкого песка, таблица 4.

Таблица 4: Максимально допустимое содержание мелкодисперсной взвеси в высокопрочном и легком бетоне

Содержание
цемента 1)
[кг/м 2 ]

Максимально допустимое содержание мелкодисперсной взвеси [кг/м 2 ] при максимальном размере зерна зернистого заполнителя

3. Производство и укладка бетона

3.1 Дозировка и смешивание

Дополнительный процесс дозирования заключается в добавлении суспензии кремнеземной пыли. Она поставляется, например, в контейнере объемом 1 м3 и должна храниться в условиях, защищающих ее от замерзания. При хранении свыше 7 дней может потребоваться гомогенизация. Вязкая, клейкая консистенция свежеприготовленной бетонной смеси требует повышенной интенсивности смешивания. В зависимости от состава бетонной смеси и вида смесителя время смешивания после добавления всех исходных веществ составляет от 60 (для легкого бетона от 90) до 180 с. Для оптимальной гомогенизации мелких веществ наиболее благоприятной оказывается следующая последовательность дозирования: зернистый заполнитель, вода, а затем летучая зола и суспензия кремнеземной пыли. Для получения оптимального эффекта от добавок их необходимо добавлять после воды и кремнеземной пыли. Последовательность и время смешивания определены в соответствующей инструкции.

При производстве высокопрочного бетона из-за клейкой консистенции смеси может потребоваться дополнительная очистка смесителя. Смешивание с подачей пара не допустимо.
В товарный бетон и бетон, транспортировка которого осуществляется на дальние расстояния, для достижения мягкой или текучей консистенции, удобной для укладки, разжижитель часто добавляют на строительной площадке. Разжижитель должен равномерно распределяться в барабане бетоносмесителя, например, с помощью распылительной трубки. Минимальное время смешивания составляет 1 мин/м3 бетона, но не менее 5 мин. Перед наполнением бетоносмеситель необходимо освободить от оставшейся промывочной воды. О времени бетонирования завод товарного бетона необходимо проинформировать как минимум за два дня до начала работ, чтобы приготовить исходные вещества, приборы и оборудование.

3.2 Укладка

При укладке высокопрочный бетон проявляет нетипичные свойства. Поэтому на стройке
— укладкой смеси должны руководить работники (начальник строительного участка, бригадир), имевшие опыт работы по укладке бетона марки > C 30/37 и
— перед каждым этапом бетонирования необходимо проводить инструктаж работников строительного участка (данные необходимо документировать).
Целесообразной, и, как правило, необходимой, является проверка на практике свойств бетона в отношении пригодности к перекачке и удобоукладываемости, проводимая персоналом строительной площадки на предусмотренном для этого оборудовании. В частности, необходимо согласовать обработку поверхности плоских строительных деталей (затирка поверхности, создание уклона, профилирование и т.д.). Подача высокопрочного бетона может осуществляться как с помощью бадьи, так и с помощью насоса, если использование того или иного способа было определено при проведении испытаний по укладке. Если в бетонную смесь не добавлялся замедлитель, то следует рассчитывать на более быстрое схватывание высокопрочного бетона по сравнению с бетоном обычной прочности. Укладка высокопрочного бетона в скользящую или подъемно-передвижную опалубку возможна в том случае, если свежеприготовленная бетонная смесь имеет низкую вязкость. При снижении водоцементного отношения и повышении содержания кремнеземной пыли увеличивается энергия уплотнения, необходимая для удаления воздуха из бетона. Расстояния между местами погружения внутреннего вибратора должны быть равны пятикратному диаметру булавы и составлять от 30 до 50 см.

3.3 Выдерживание бетона

Использование минимального времени выдерживания бетона согласно 1045-3:2001 означает, что во многих случаях уже после первого дня данный этап в процессе бетонирования может быть закончен. Вследствие короткого времени выдерживания высокопрочный бетон в зоне поверхности не достигает полной эффективности. Рекомендуемое время выдерживания внутренних строительных элементов составляет как минимум 2 дня, а наружных — 3 дня. Благоприятно на качестве бетона сказывается выдерживание с подводом воды,
результате низкого водоцементного отношения, что может привести к образованию микротрещин. Мероприятия по выдерживанию бетона необходимо начинать проводить сразу же после его уплотнения.

3.4 Обеспечение качества

При производстве высокопрочного бетона стандартами DIN EN 206-1:2001 и DIN 1045-2:2001 [1, 2] устанавливаются высокие требования к контролю продукции. Для непрерывного обеспечения качества продукции необходимо составить план обеспечения качества, который будет включать в себя следующую информацию:
• поставка исходных веществ,
• производство и транспортировка бетона,
• обработка бетона на строительной площадке или на заводе готовых конструкций,
• действия при отклонении от заданного плана,
• определение предельных значений наконец, секции бетонирования и личную ответственность.
позволяющее избежать его высыхания в

Таблица 5: Классы прочности высокопрочного бетона (Образцы: цилиндр (0 150 мм, высота 300 мм) или кубик (длина ребра 150 мм, выдерживание в соответствии с EN 12390-2))

Класс прочности бетона

Читать еще:  Огнеупорный (жаростойкий) бетон своими руками

Характеристическая прочность цилиндра на сжатие
fck
[Н/мм 2 ]

Что такое высокопрочный бетон?

На сегодняшний день искусственный стройматериал занимает одно из лидерских мест в строительной отрасли. Современный высокопрочный бетон различных марок несколько отличается от давно привычных нам бетонов. Он обладает гораздо лучшими высокопрочными свойствами, нежели «старые» смеси. Сооружения из высокопрочного бетона выходят крепкими, надежными, способными служить на пользу людям много десятков лет.

Что собой представляет материал?

Высокопрочным бетоном называют тяжелые, мелкозернистые смеси марок М600-М1000, минимальная прочность на сдавливание которых равняется В60 и выше. Применение высокопрочных растворов позволительно для строительства различных уровней сложности. Любой архитектурный проект можно воплотить в реальность при помощи такого стройматериала.

Высокопрочный бетон отлично взаимодействует с крепким армирующим материалом. Их тандем высоко ценится и пользуется широким спросом у мастеров, особенно при возведении железобетонных строений. Наборные железобетонные сооружения возводятся на тяжелых бетонах марок 400-500. Применение стройматериалов больших марок разрешает уменьшить массу строений, сократить диаметр в разрезе, изготовить максимально подходящие по параметрам изделия.

Высокопрочные бетоны, склонные к стремительному застыванию, способны практически в таких же темпах повышать свой уровень крепости. Это позволяет значительно уменьшить время паровой обработки бетонных конструкций при их производстве, а иногда и вовсе отказаться от данной манипуляции.

Низкий уровень деформирования в высокопрочном бетоне при краткосрочных либо довольно продолжительных нагрузках увеличивает твердость конструкционных деталей, способствует уменьшению расползания стройматериала. Высокопрочному бетону свойственна та же интенсивность усадки, что и раствору со средней прочностью.

Составляющие компоненты

От входящих в состав ингредиентов требуется наделить строительную смесь необходимыми свойствами при самых малых расходах сырьевых материалов. Основа состава высокопрочных бетонов состоит из вяжущих веществ, песка, крупных наполнителей.

Вяжущее материалы

Как правило, роль вяжущих компонентов для такого рода бетонов выполняют наиболее активные портландцементы определенной консистенции. Профессионалы советуют использовать вяжущие с густотой 25-26 % и минимальной активностью 500-600. Высокопрочный бетон следует готовить на основе портландцементов с повышенной активностью. Благодаря ускоренным темпам приобретения бетонами прочности нет необходимости в применении разных примесей, убыстряющих застывание раствора.

Создание высокопрочных строительных смесей не обходится без добавления крупных либо мелких кварцевых полевошпатовых песков. Кристаллики крупных марок песка идут 1,25-5 мм шириной, песчинки мелких сортов – 0,14-0,63 мм. Чтобы строительная смесь лучше ложилась во время стройки, при ее изготовлении мелкого песка добавляют больше, нежели крупного. Но иногда эту пропорцию выравнивают.

Некоторые марки сверхпрочного бетона (вплоть до 800) изготавливаются из чисто крупных либо средних сортов песка. Однако в этом вопросе следует соблюдать рамки, указанные госстандартами.

Крупный заполнитель

Крупным наполнителем в подобных строительных смесях служит щебенка. Крепость на сжатие сего заполнителя при повышенной влажности должна быть минимум в полтора раза больше, нежели у бетонного раствора. Перед использованием щебенку следует отсортировать, очистить от отмучиваемых частиц. Ширина отсортированных песчинок должна варьироваться по фракциям: 5-10, 10-20, 20-40 мм.

Сорт щебня подбирают под нужную ширину бетонного изделия, а также под тип используемой арматуры. Для слабо армированных сооружений с толстыми стенами используют материал с заполнителем, крупность которого составляет до 70 мм. Наполнитель, применяемый при изготовлении высокопрочного состава, должен быть сухим, отвечать всем запросам ГОСТ.

Тонкомолотые добавки

В высокопрочный бетон принято добавлять кремнеземную пыль. Но бетоны, прочность которых составляет C 55/67, C 60/77, могут обойтись без этой силикатной добавки. Кремнеземная пыль появляется при очищении газообразной отработки во время производственных процессов кремния.

Силикатная пыль действует внутри бетонных составов по трем направлениям:

  • заполнение свободных пространств между цементными кристаллами, тем самым наделяя бетонное изделие гораздо большей плотностью;
  • пуццолановое взаимодействие с гашеной известью, обеспечивающее рост прочности цементного раствора;
  • • улучшение взаимной реакции между песком и цементом.

К основным составляющим высокопрочного бетонного раствора могут также добавляться пластификаторы химического происхождения.

Характерные свойства

Современные бетонные смеси с повышенной крепостью обладают массой свойств, положительно сказывающихся на эксплуатации готовой продукции. Мастера отделяют характеристики бетонного раствора от свойств уже готовых монолитов.

Показательные характеристики жидкого раствора

Главными эксплуатационными параметрами бетонной смеси являются:

  • плотность от 1,0 до 1,4;
  • плывучесть с деформацией конуса от 65 до 70 см;
  • содержание всего 1 % кислорода;
  • мизерные показатели расслоения;
  • минимальные сроки поддержания реологических качеств – 3-4 часа.

То, что растворы могут сохранять свои качества на протяжении некоторого времени, дает им большой плюс. Ведь при перевозке дорога от места производства до строительной площадки может длиться не один час. Большую роль играет консистенция раствора. Она должна быть идеально однородной, иначе есть риск расслоения, и как итог, утеря характерных качеств застывшего стройматериала.

Параметры застывших бетонных монолитов

Среди показательных свойств бетонного камня выделяют:

  • прочность на сдавливание, варьирующаяся от 50 до 100 МПа, а также на растягивание во время загибания – минимум 4 МПа;
  • уплотненность и пористость;
  • износостойкость;
  • устойчивость к минусовым температурам минимум F400 и водонепроницаемые способности от W10;
  • впитывание влаги максимум 1 %;
  • малый процент искривления.

К сожалению, повышенная плотность бетонов такого рода из-за высокого давления при взаимодействии с влагой может привести к образованию микроскопических разрывов в материале. Строительную смесь с повышенной плотностью желательно наделить умеренной пористой структурой, которая исполнит роль смягчителя для лишней энергии и напряжения во время тепловыделения при застывании.

Производство сверхпрочного композита

Во время изготовления подобных материалов главное – добиться нормальной удобоукладываемости композита на протяжении всего строительного процесса. Достичь этой цели возможно при выполнении следующих условий:

  • непрерывное наблюдение за уровнем влажности наполнителей;
  • соблюдение четких дозировок согласно рецептуре;
  • использование для смешивания высокоскоростных смесительных устройств;
  • четкая последовательность закладки ингредиентов внутрь смесителя, установление положенного времени смешивания для каждого компонента;
  • если бетон покупной, то нужно узнать сроки начала его застывания, сопоставить их со временем, требуемым для перевозки, монтажа стройматериала, и если нужно, домешать в состав веществ, замедляющих твердение;
  • соблюдение правильных добавочных пропорций пластификатора на месте строительства.

Заметим, что для сверхпрочных смесей лучше использовать материалы с повышенной активностью, потому как их несложно перекачивать посредством бетонной помпы. От правильности ухода за бетоном зависит его качество. Материалу следует обеспечивать влажную обработку на протяжении трех суток. Это гарантирует устойчивость готового продукта к различным негативным факторам, а также долгий срок службы.

Дабы не наделать промахов во врем изготовления, монтажа и ухода за композитом, специалисты советуют набросать схему действий, контролирующих все вышеперечисленные процессы. Здесь должны присутствовать такие пункты:

  • контроль от лица производителя стройматериала: отслеживание характеристик и качества сырья, технических способностей, исправности производственного оборудования; выявление характерных параметров готовой смеси и предполагаемых отклонений;
  • контролирование от лица покупателя, использующего бетон;
  • меры при несоответствии желаемым требованиям;
  • выявление ответственных особ.

Вернуться к оглавлению

Области применения

Высокопрочные композиты используются, как правило, в случаях, где есть нужда в снижении размеров и веса сооружения, а также требуется повышение коэффициента прочности конструкции. К этим случаям относятся:

  • постройка многоуровневых конструкций;
  • возведение мостов и иных транспортных сооружений;
  • строительство складов для хранения радиоактивного утильсырья;
  • заливка полов внутри масштабных промышленных сооружений;
  • постройка иных особых объектов.

Основные принципы создания высокопрочных и особо высокопрочных бетонов

Значениетерминов «высокопрочный», «особо высокопрочный», «суперпрочный» бетон постоянноменялось. В практике строительства зданий и сооружений из железобетона в Россиимаксимальная прочность использованного высокопрочного бетона, по нашим данным,не превышала марки М1000.

Впрактике строительства из железобетона в США, Японии, Канады, Норвегии,Германии используются бетоны с прочностью 120–140 МПа. В лабораториях этихстран разработаны щебеночные и бесщебеночные тонкозернистыереакционно-порошковые бетоны из самоуплотняющихся смесей с прочностью 150–250МПа. Перспективы использования таких бетонов с чрезвычайно высокой прочностьюна растяжение и трещиностойкостью, которая обеспечиваются во всем объемеконструкций за счет использования тонкой и короткой арматуры (геометрическийфактор L/d = 30–60), будут постояннорасширяться. Хотя стоимость таких бетонов в 1,5–1,8 раза выше бетонов классовВ30–50, однако снижение объема бетона в конструкциях в 4–6 раз позволяетэкономить расход всех составляющих бетона в 2–3 раза.

Помимоэтого, во столько же раз снижаются транспортные расходы, значительно снижаетсямасса зданий и сооружений.

ВРоссии особо высокопрочные бетоны пока не востребованы. Нет условий для их полученияхотя есть высокопрочные горные породы, микрокремнезем и эффективныеотечественные и зарубежные супер- и гиперпластификаторы. Горнодобывающаяпромышленность не поставляет мытые высокопрочные заполнители фракции 3–10 или 3–12мм и обогащенные пески. Не освоено производство каменной муки с удельнойповерхностью 300–350 м2/кг. Бетоносмесительные цеха не имеютдостаточного количества расходных бункеров и не оборудованы высокоскоростнымисмесительными агрегатами.

Втеории отсутствует принципы подбора самоуплотняющихся бетонных смесей сраплывом конуса 55–60 см для получения особо высокопрочных фибробетонов. Неизучены необходимые реотехнологические свойства бетонных смесей.

Предложеннаяранее [2, 3] классификация реологических матриц для высокоподвижных и литых бетонныхсмесей, отличающихся различными масштабными уровнями и обеспечивающихминимальное предельное напряжение сдвига, позволяет сформулировать основныепринципы создания высокопрочных (ВПБ) и особо высокопрочных (ОВПБ) бетонов ссупер- и гиперпластификаторами, с каменной мукой и реакционноактивнымидобавками. Оптимальное соотношение компонентов в реологических матрицахбетонных смесей для бетонов общего назначения с каменной мукой с небольшими расходамипортландцемента также приводит к существенному повышению прочности [4].

Введение в бетонную смесь супер- игиперпластификаторов и реакционноактивных пуццолановых добавок микрокремнезема(МК) и микрометакаолина (ММК) — условие необходимое, но недостаточное длясоздания ВПБ и ОВПБ с прочностью 150–200 МПа. Используя суперразжижители вбетонах традиционных составов, обеспечивающих заполнение каркаса бетонамаксимальным количеством щебня, можно увеличить прочность бетона в «тощих»составах на 10–15 %, а в «жирных» — на 25–40 %. Добавляя МК или ММК, можносвязать до 20 % гидролизной извести из алита и белита и повысить прочностьбетона на 20–50 %. В итоге общее увеличение прочности может быть полуторо-двукратным.Используя для бетона М500 экономичный состав с соотношением компонентов Ц:П:Щ =1:1,5:2 при расходе цемента 500 кг с маркой его М550, можно при В/Ц=0,38 получить маркубетона 500. При введении суперпластификатора и снижении расхода воды до 20–25 %можно повысить прочность до 65–75 МПа. При введении МК в количестве 15–20% отмассы портландцемента можно из самоуплотняющихся бетонных смесей достигнутьпрочности бетона 80–100 МПа. Такое значение прочности является предельным длятрадиционных составов бетона. При этом концентрация твердой фазы, вычисляемаякак отношение суммы объемов цемента, песка и щебня к 1 м3 бетона, будеточень высокой и составит 85–89 % при водотвердом отношении бетонной смеси 0,072–0,090.

В статье[5] приводятся результаты испытания высокопрочного бетона, изготовленного сиспользованием ВНВ-100 активностью 92 МПа, мытого гранитного щебня, крупного пескаи МК. Бетон имел к 28 сут. нормального твердения прочность при сжатии всего 86МПа. Это является доказательством того, что дальнейшее повышение прочностиневозможно без кардинального изменения состава и топологической структурыбетона. Новая рецептура и структура высокопрочных бетонов должна увеличить объемреологической водно-дисперсной матрицы (Vдп) первого рода, состоящей из цемента,добавки МК и воды. Эта более объемная матрица должна обеспечить свободноеперемещение частиц песка в водно-дисперсной системе.

Повышениекоэффициента раздвижки зерен песка можно осуществить за счет добавления воды.Но это приводит к расслаиванию бетонной смеси и снижению прочности бетона.

Читать еще:  Цемент и бетон - в чем разница между этими материалами?

Вбетонах нового поколения объем реологической матрицы необходимо увеличиватьдобавлением к цементу не только МК, но и дисперсных частиц каменной муки микрометрическогомасштабного уровня. При этом замена цемента каменной мукой, как правило, не всостоянии значительно увеличить объем дисперсной реологической матрицы, если истиннаяплотность горной породы незначительно уступает плотности портландцемента. Объемдисперсной матрицы может быть еще меньше, если замещающая некоторую долюцемента каменная мука, будучи более реологически активной в суспензии ссуперпластификатором, чем цементная суспензия, снизит количество воды. В этомслучае мука, обеспечивая более высокую гравитационную растекаемость приминимуме содержания воды, чем цементная суспензия, еще более понизит содержаниеводно-дисперсной системы за счет сокращения объема воды. При значительномдобавлении к цементу мука позволит существенно увеличить объем водно-дисперснойматрицы с высоким водоредуцирующим индексом (ВИ). ВИ большинствапортландцементов в суспензиях составляет 1,6–2,0 и редко выше. Некоторые видыкарбонатных и силицитовых каменных пород имеют ВИ = 2–4, а отдельные оксиды — до4–6. Смеси цемента с некоторыми видами каменной муки обладают синергетическим действием(соразжижением), и их суспензии обеспечивают реологический индекс 2–3, то есть двух-трехкратноеуменьшение количества воды при сохранении текучести с предельным напряжениемсдвига 5–10 Па.

Второйважный для обеспечения «высокой» реологии бетонных смесей для высокопрочных бетоновфактор — увеличение подвижности за счет увеличения объема цементно-водно-песчанойреологической матрицы второго уровня. Онадолжна обеспечить свободное перемещение зерен щебня в цементно-песчаной(растворной) смеси, то есть необходима существенная раздвижка зерен щебня.

Прирасчете состава бетона по методу абсолютных объемов достижение рациональнойреологии обеспечивается увеличением прослойки цементного теста между частицамипеска и прослойки цементно-песчаного раствора между зернами щебня. В формулахрасчета состава бетона это учитывается коэффициентом раздвижки зерен щебня ,который варьирует от 1,1 до 1,5. Сделать коэффициент раздвижки выше 1,5 можноза счет увеличения доли песка или объема цементного теста. В первом случаебетон становится «запесоченным», с пониженной прочностью. Во втором — бетонстановится более дорогим из-за значительного снижения доли щебня, увеличениясодержания цемента.

Длявысокопрочных бетонов повышение количества цемента на 10–20 % свыше 500 кг/м3является неизбежным. Соответственно, необходимо увеличить долю каменной муки, атакже МК или ММК, чтобы уменьшить содержание щебня и песка.

Такимобразом, топологическая структура высокопрочных и особо высокопрочных бетоновпринципиально должна отличаться от структуры бетонов общего назначения марок300–600, имеющих компактную упаковку зерен песка в цементом тесте и зерен щебняв цементно-песчаном растворе. В этой структуре принцип непрерывнойгранулометрии щебня, «незыблемый» для традиционных бетонов, не является обязательным.Иными словами, бетон должен быть с «плавающей» структурой песка и щебня, тоесть малопесчаным и малощебеночным.

Введем в качестве критериальных параметров такойструктуры критерий избытка абсолютного объемовреологической дисперсной матрицы над абсолютным объемомпеска и критерий избытка объема реологической цементно-дисперсно-песчанойматрицы над объемом щебня:

, (1)

, (2)

где— абсолютные объемы цемента,каменной муки, МК, песка, щебня и воды соответственно.

Объемыкомпонентов на 1 м3в рецептуре обычных и высокопрочных бетонов представлены на рис. 1.

Рис. 1. Объемы компонентов на 1 м3 в рецептуреобычного (а) и высокопрочного (б) бетонов

Проведеннымиисследованиями установлено, что если в обычных бетонах варьируется от 1,2 до1,6, — от 1,15 до 1,5, тодля ВПБ и ОВПБ изменяется от 3,0 до3,5, а — от 2,2 до 2,5. Вотдельных высокопрочных бетонах значения этих критериев могут быть еще больше: =3,5–3,9, =3,0–3,5.

В табл.1 представлены расчеты критериев и для ВПБ, ОВПБ ибетонов общего назначения. Составы дисперсно-армированных ВПБ (составы 1–3),изготовленных из бетонной смеси с использованием кварцевой муки и МК с осадкойбольшого конуса (немецкий стандарт) 55–60 мм и прочностные показатели бетоноввзяты из статьи [6]. Состав бетона повышенной прочности (состав 4),изготовленного из бетонной смеси на ВНВ-100 (содержание СП не указывается) с 10% МК от массы цемента, взяты из статьи [5].

Высокопрочный бетон (высокой прочности, сверхпрочный): применение, преимущества и недостатки

Физические и механические возможности бетона высокой прочности недостижимы для традиционных материалов прошлого. Его использование позволяет создавать долговечные устойчивые конструкции при относительно небольшом весе.

Бетон высокой прочности

Растущие потребности строительства заставили модифицировать бетонные смеси.

Высокопрочный бетон с пределом прочности при сжатии В60 обладает:

  • повышенной надежностью;
  • возросшим размахом бетонных конструкций любой формы;
  • повышенной износостойкостью;
  • увеличенной грузоподъемностью;
  • устойчивостью к агрессивной среде;
  • долговечностью;
  • морозостойкостью.

Прочность на растяжение материала составляет 10% от прочности на сжатие. К преимуществам инновационного материала можно отнести и снижение на 30% его расхода по сравнению с существовавшим ранее. Использование цемента при этом уменьшилось до 450-600 кг/м³. Большинство высокопрочных бетонов являются водонепроницаемыми.

Сверхпрочный бетон (марка C 100/115 по европейским стандартам) не только выдерживает различные механические нагрузки. В его составе — высокотехнологичная смесь, позволяющая создавать конструкции любой геометрии.

Легкость укладки способствует уменьшению численности рабочих на стройке. Суперпрочный материал способен самоуплотняться, что в ходе строительства делает ненужными вибраторы.

Нормативно такая бетонная смесь не регламентирована. Однако в условиях лаборатории под воздействием тепла и давления достигнуто значение прочности на сжатие до 800 Н/мм (единица измерения момента силы).

Европейская классификация бетона

Европейский бетонный стандарт EN-206-1:2000 вводился с переходными периодами в зависимости от конкретики стран.

Сегодня применяется стандарт PN-EN-206+A1:2016-12. Классы прочности маркируются буквой С и цифрами: от C 8/10 до C 100/115.

Первое число указывает на характерную прочность материала на сжатие, выявленную на цилиндрах (например, в Великобритании, Франции). Второе — демонстрирует механопрочность, полученную с помощью кубических образцов (Польша, Германия).

Высокопрочный класс определяется как плотные бетоны с характерной прочностью выше C55. В Европе разработаны нормы для материалов класса прочности до C100.

Бетоны с легким заполнителем можно изготавливать как высокопрочные. Европейские нормы отводят им классы прочности от LC55 до LC80.

Европейский стандарт учитывает также степень воздействия, как связанного, так и не связанного с нагрузкой.

Классификация воздействий учитывает конкретику условий использования бетона, мер защиты, покрытий для металла и арматуры:

  • X0 — нет риска коррозии и химической агрессии;
  • XC1-4 — коррозия, вызванная карбонизацией;
  • XD1-4 — коррозия из-за хлоридов;
  • XS1-3 — коррозия, вызванная хлоридами морской воды;
  • XF1-4 — агрессивный эффект замораживания/оттаивания;
  • XA1-3 — химическое воздействие;
  • XM1-3 — агрессия от истирания.

Стандарт регламентирует нормы для тяжелого, сверхтяжелого и легкого стройматериала, произведенного без воздухововлекающих и газообразующих заполнителей. Не учтены в классификации крупнопористый и жаростойкий материал и бетонная смесь плотностью менее 800 кг/м³.

Возрастающие требования строительной отрасли обусловили проведение модификации бетона. Основа процесса — оптимизация состава цементного теста, повышающая прочность материала.

Высокопрочные бетоны производят, используя:

  1. Вяжущие компоненты . Это пластифицированный, гидрофобный или простой портландцемент. При создании основы важны: густота цементной массы (25-26%) и активность (не ниже 500-600). Высокоактивные портландцементы ускоряют нарастание твердости и сокращают потребность в средствах для схватывания материала.
  2. Сопутствующие заполнители . Это грубые или мелкие фракции магматических пород и искусственных примесей:
    • стандартизированная добавка — микрокремнезем — побочный продукт производства кремния и ферросилиция;
    • пуццолановые премиксы: вулканический пепел, пемза, туф;
    • фракции клинкера, керамзита, шамота, шлака (с содержанием оксида кальция менее 40%).
  3. Водный компонент . Допустимо применение водопроводной воды и из природных водоемов при pH не ниже 4. Запрещено использовать:
    • воду с большой концентрацией хлорида натрия, а также других солей натрия, кальция и магния;
    • болотные, канализационные, сточные бытовые и промышленные воды.

Микрогранулы примесей в сотни раз меньше цементных. Они меняют свойства материала, заполняя пространство между его частицами, усиливают сцепление и увеличивают прочность бетона. Размер гранул в конкретике применения должен соответствовать ГОСТ. Инертный сыпучий агрегат составляет около 80% веса бетона и 70-75% его объема.

Кроме основных компонентов для создания высокопрочных бетонов применяются водные примеси (пластификация), разжижающие добавки, примеси для аэрации и ускорения затвердения.

Применение высокопрочного бетона в российской строительной практике

В статье рассматриваются технологические и экономические особенности строительства из высокопрочного бетона. Рассматриваются вопросы применения специальных добавок, повышающих прочность бетона, и достоинства применения бетона высокопрочных марок, по сравнению с обычными марками этого материала.

Бетон в последние десятилетия является основным конструкционным материалом, который применяется в строительстве, причем его высокопрочные марки отличаются особыми свойствами, которые пока не нашли распространения в строительной практике. Высокопрочным, согласно требованиям ГОСТ 25192-2012 «Бетоны. Классификация и общие технические требования», считается бетон класса прочности при сжатии В55 и выше [1].

К числу достоинств высокопрочных марок бетона в научной и практической литературе относят его более высокую плотность, морозостойкость, долговечность, водо- и газопроницаемость, устойчивость к агрессивным химическим факторам, износостойкость [5, с. 101]. Высокопрочный бетон также отличается повышенной антикоррозионной защитой арматуры, что важно в условиях повышенной влажности или создании конструкций мостов, плотин и тому подобных сооружений. Важным фактором при выборе для строительства высокопрочных марок бетона является такое их свойство, как высокая выносливость на сжатие и растяжение, что особенно важно при сооружении не только технологических объектов, но и высотного строительства [10].

При этом применение при строительстве высокопрочных бетонов для создания основных несущих конструкций в литературе отмечается как эффективное [3, с. 24]. В работах [6, 7] отмечается, что в результате использования бетона высокопрочных марок растет несущая способность основных несущих конструкций, уменьшается размер сечения конструкций, снижается расход и арматуры, и собственно бетона, конструкции отличаются также меньшим весом и большей компактностью.

Все эти достоинства применения высокопрочного бетона подтверждаются не только опытом практической работы, но и результатами исследований И.Т. Мирсаяпова и А.Г. Тамразян [7, с. 53]. Эти исследователи доказали, что применение в элементах железобетонного каркаса высокопрочного бетона В100 по сравнению с использованием бетона марок В20 и В30 отличается снижением расхода стали и уменьшает раскрытие трещин практически в два раза (при этом в некоторых элементах возможность образования трещин полностью исключается). Использование высокопрочного бетона также дает возможность при проектировании зданий и сооружений уменьшить размер поперечного сечения колонн и ригелей, что приводит к уменьшению объема бетона, который требуется для изготовления основных конструктивных элементов, что приводит к снижению стоимости строительства [6, 7].

В российской строительной практике несмотря на то, что разработаны и опробованы технологии, позволяющие получать высокопрочные бетоны, отличающиеся уникальными свойствами, они почти не применяются. Как отмечается в исследовании агентства РА Эксперт, в Российской Федерации строительство основного объема зданий и сооружений по-прежнему осуществляется из материала с классом прочности В10-В35 (прочность на осевое сжатие 150-450, или 15-45 Мпа) [4]. На это обстоятельство не слишком сильно повлияло даже массовое увеличение этажности строительства, и сегодня, как и в 1990-2000-х годах, массовое строительство использует только материалоемкие бетоны низких марок.

Как отмечает Ю.М. Баженов, одним из технологических условий получения высокопрочных бетонов является создание такой его структуры, которая бы отличалась особой плотностью, прочностью и монолитностью. Этого можно добиться при соблюдении нескольких условий [2, с. 226]:

  • применение высокопрочных цементов и заполнителей;
  • предельно низкое водоцементное отношение;
  • высокий предельно допустимый расход цемента;
  • применение суперпластификаторов и комплексных добавок, которые способствуют получению плотной структуры этого материала;
  • особо тщательное перемешивание и уплотнение бетонной смеси;
  • созданием для твердения бетона наиболее благоприятных условий.

Разработка модифицированных бетонов основывалась на появлении суперпластификаторов и микрокремнеземов – высокодисперсных кремнеземсодержащих материалов техногенного происхождения. Использование этих материалов и сочетание с ними небольших количеств других органических и минеральных материалов позволяет модифицировать структуру материала на микроуровне таким образом, чтобы придать бетону свойства, которые обеспечивали бы ему эксплуатационную надежность конструкций [3, с. 24].

Читать еще:  Монолитный арболит своими руками: дом из арболита

При изготовлении высокопрочных бетонов применяются суперпластификаторы – синтетические полимеры, основное назначение которых – повышение текучести и подвижности бетонной смеси. Объем суперпластификатора составляет 0,1-1,2% от массы цемента. Основное назначение суперпластификатора – воздействие на структуру на коагуляционной стадии изготовления бетона, изменение реологических, то есть связанных с текучестью, свойств материала, что оказывает влияние на кристаллизационную структуру бетона [10].

Микрокремнезем – это очень мелкие шарообразные частицы аморфного кремнезема, их средняя удельная поверхность составляет около 20 кв. м/г, а средний размер частицы – 0,1 микрона, то есть примерно в сто раз меньше зерна цемента. Смысл добавления в бетонную смесь микрокремнезема состоит в том, что его частицы окружают каждое зерно цемента, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями [10].

При изготовлении высокопрочных порошковых бетонов в бетонную смесь вводят каменную муку, которая повышает как действие суперпластификатора, так и влияет на свойства реологической матрицы самого бетона. Это позволяет и уменьшить количество воды, и увеличить прочность получившегося материала, добавление каменной муки фактически приравнивается к увеличению объема цемента в бетонной смеси [10].

Технология изготовления высокопрочного легкого бетона основана на том, что бетонная смесь имеет специальный состав, в который входят цемент, наполнитель – микросферы, кварцевый песок, пластификатор и вода плюс минеральная часть, которая состоит из кремнеземистых компонентов. При этом этот бетон не содержит крупный заполнитель, снижение средней плотности материала происходит за счет введения в него сферических частиц микрометрического размера – углекислого газа в твердой непористой оболочке, как правило, это стеклянные или алюмосиликатные микросферы. В сочетании со специально подобранными компонентами цементно-минеральной составляющей бетона и специальными модифицирующими добавками полый наполнитель формирует одновременно прочную и плотную структуру бетона с насыщенной закрытой пористостью [5, с. 101].

Технология изготовления высокопрочного дисперсно-армированного фибробетона основана на модификации материала на двух уровнях. На микроуровне – через применение комплексных добавок (суперпластификаторы, реакционно-активные наполнители и гидрофобизаторы), которые вводятся совместно с клинкером, на макроуровне – добавкой армирующих волокнистых элементов (0,3-2%). Различают две группы фибробетона: металлическая (применяются стальные волокна различной формы и размера) и неметаллическая (используются такие материалы, как стекло, полиэтилен, углеродные волокна и так далее) [9, ч. 52]. Такая технология повышает прочность бетона при сжатии (на 4,14% при использовании синтетических, и на 6,16% – стальных волокон) и растяжении (на 10,45 и 14,53% соответственно), а также стойкость к образованию трещин и ударную вязкость [8, с. 22].

В литературе отмечается, что применение супер- и гиперпластификаторов, каменной муки, микрокремнезема и золы позволяет повысить уровень прочности получившихся бетонов до 150-200 МПа. Но повышение прочности имеет свои недостатки: повышается хрупкость, снижается коэффициент поперечной деформации (или коэффициент Пуассона) до 0,14-0,17, что влечет за собой риск внезапного разрушения конструкции [10].

Таким образом, разработка новых, современных технологий позволяет изготавливать высокопрочные бетоны нового поколения, к сожалению, как отмечают эксперты [4], все эти возможности в России не реализуются, отставание в этом плане от передовых стран уже очень значительно и с каждым годом нарастает.

Между тем, за рубежом именно при использовании всех этих технологических достижений становится возможным строительство зданий высотой до 500-800 м, однопролетных автомобильных и железнодорожных мостов с длиной пролета до 2 км, нефтяных и газовых платформ для добычи полезных ископаемых на морском шельфе и других сооружений.

При этом, как отмечается в исследовании [4], использование для изготовления центрально-нагруженной колонны сечением 300×300 мм из высокопрочного бетона класса В100 требует для своего изготовления в четыре раза меньше цемента, песка, воды, суперпластификаторов и щебня, чем изготовление аналогичной конструкции сечением 600×600 мм из бетона класса В25. Примерно в таком же соотношении снижается и вес получившейся конструкции, затраты на монтаж и перевозку необходимых материалов, повышается производительность труда и улучшаются его условия.

Таким образом, существенные преимущества строительства из высокопрочных марок бетона определяются эффектами в строительстве, транспорте, энергосбережении, экологии, особенностях природопользования. Более широкое применение в строительстве зданий и сооружений высокопрочного бетона нового поколения следует считать одной из самых важных для строительства. Ее решение приблизит строительную отрасль России к мировому уровню как проектирования, так и сооружения самых разнообразных объектов, изменит не только экономику отрасли, но и внешний вид зданий, предоставив возможность архитекторам использовать более прочные, но менее массивные и материалоемкие ажурные, легкие, надежные и долговечные конструкции.

Высокопрочный бетон, марки, состав и применение

Бетонные смеси относятся к категории самых используемых в строительстве материалов. Это влечет за собой постоянную работу по совершенствованию композитного состава и качества входящих в него составляющих. Несколько лет назад в разряд особо прочных искусственных камней входили материалы класса В30, но сегодня это положение поменялось самым кардинальным образом.

Современный высокопрочный бетон по своим характеристикам и технологическим свойствам существенно отличается от классических смесей для изготовления бетонного камня. Его параметры отличаются не только по прочности, но и по целому ряду других характеристик. При этом сегодня существует несколько различных видов высокопрочных композитных материалов применяемых в монолитном строительстве.

Особенности современных бетонных составов

Еще в советское время стандартная номенклатура строительных материалов предусматривала возможность изготовления высокопрочных бетонов соответствующих классов от В40 до В60. Их применяли в строительстве особо ответственных конструкций и элементов мостов, плотин, железнодорожных шпал и других. Однако отличительной характеристикой этих составов являлась их высокая жесткость и низкая способность к качественной укладке.

Современные композитные смеси повышенной прочности отличаются не только высокой устойчивостью к механическим и весовым нагрузкам, но и прекрасным уровнем технологичности при укладке в монолитную конструкцию. Очень хорошая подвижность и способность материалов к самоуплотнению позволяет отказаться от использования вибрационного оборудования и уменьшить необходимое количество рабочих на строительной площадке.

Способность сверхпрочного бетона к самостоятельному уплотнению при укладке

При получении новых сортов бетона изготовители строительных материалов получают уникальную структуру искусственного камня благодаря применению технологии непрерывной гранулометрии всех составляющих компонентов.

Точно подобранные фракции наполнителей размером не более 20 мм и специально обработанных для получения особой формы, позволяют получить особое активное строение материала, способного перетекать и уплотняться под собственным весом. За счет этих свойств такие смеси получили обобщающее название самоуплотняющихся бетонов (СУБ).

Сочетание высококачественных портландцементов тонкого пола, активных добавок из минерального сырья и мелких обработанных наполнителей такая система при укладке остается максимально стабильной и удобной в работе. Однако следует заметить что подбор и сортировка составляющих компонентов достаточно сложные в технологическом плане. Поэтому такие сбалансированные системы довольно дороги и используются только после соответствующего экономического обоснования.

Технология приготовления композитных составов

Изготовление высокопрочных бетонов отличается от классических способов использованием более сложных механизмов и особыми требованиями к составляющим компонентам. Перемешивание смесей происходит в скоростных смесителях с двумя вращающимися валками, конструкция которых позволяет перетирать и измельчать частицы крупных фракций.

Большое внимание уделяется точности дозирования входящих в состав компонентов. В результате в место трех классических бункеров для цемента, песка и щебня в производстве по новой технологии их количество может возрасти до восьми. Кроме этого во время производства особо прочного бетона производится непрерывный контроль влажности исходного сырья. Изменение количества влаги может унизить марку материала или ухудшить показатели удобной укладываемости. Все это приводит к усложнению процесса и удорожанию оборудования.

В процессе приготовления смеси вначале перемешивают цемент, наполнители самых мелких фракций и минеральные добавки. После этого добавляют воду с модификаторами химического состава и песок. Последним добавляется щебень, и итоговое перемешивание продолжается не менее дух минут. Только точное соблюдение пропорции и порядка технологии позволяет получать композитные смеси заданной прочности.

Технические характеристики

Качественные показатели бетона нового поколения подразделяют на два блока. В первый входят данные говорящие о характеристиках, влияющих на выполнение укладки приготовленного материала, а во второй механические качества застывшего бетонного камня. Зерновой состав крупного и мелкого заполнителей после фракционирования должен отвечать требованиям ГОсТ 31914-2012 “Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества”.

Определяющие параметры композитной смеси

Основными показателями для оценки качества приготовленного бетона являются:

  • подвижность конуса на расплыв не менее 65 см;
  • коэффициент самоуплотнения не менее 1,0;
  • время сохранения пластических качеств и начала процесса гидратации не менее 4 часа;
  • содержание воздуха не более 1%;
  • минимально возможное расслаивание во время транспортировки.

Так же важным показателем является однородность приготовленной смеси, ее влажность и текучесть.

Характеристики бетона после полного твердения

В этом блоке к основным показателям относят:

  • класс бетона В50-100, обеспечивающий предельную прочность сжатия от 50 до 100 МПа;
  • морозостойкость более 400 циклов замораживания и оттаивания;
  • водопроницаемость не менее W10;
  • плотную структуру камня и низкую истираемость;
  • водопоглощение не более 1%.

Процесс гидратации при твердении такого бетона сопровождается довольно большим выделением тепла. В плотных материалах эта энергия просто не может выйти наружу и в структуре камня могут образовываться трещины. Для того чтобы избежать этого в состав добавляют специальные химические вещества способствующие созданию мелкопористой структуры, которая играет роль поглощающего буфера при возникновении внутренних напряжений в материале.

Применение особо прочного бетона

Бетонные композитные смеси нового поколения отличаются от классических марок более высокой стоимостью. Поэтому их применение должно быть основано на проведении технико-экономических расчетов. Столь высокие прочностные показатели не требуются в массовом типовом строительстве, и поэтому вопрос применения этих материалов возникает не часто.

Наиболее часто высокопрочный бетон применяют при строительстве высотных зданий, мостов, гидротехнических сооружений, энергетических установок и конструкций сложной геометрической формы. Еще не так давно высотные здания возводились из металла, поскольку железобетонные конструкции были неспособны выдерживать вес нескольких десятков этажей. Современные композитные материалы позволяют в значительной степени уменьшить металлоемкость строительных конструкций и обеспечить необходимую прочность и надежность.

Ponte Sheikh Zayed

Его применяют для возведения мостовых пролетов большой длины, уменьшая количество несущих опор и ускоряя сроки выполнения проекта. Применение новых композитных материалов обычно направлено на решение сложных инженерных задач и редко встречается в традиционных способах строительства.

Видео обзор материала

Бетон это каменный строительный материал, получаемый в результате твердения залитой в форму и уплотненной полужидкой смеси. Его приготавливают путем перемешивания .

Фундаментные конструкции подвержены воздействию влаги поступающей при сезонном повышении грунтовых вод, при таянии снега и после сильных дождей. При этом .

Технология выполнения монолитных работ это способ возведения элементов зданий и сооружений из бетонной смеси и арматуры с использованием специальных опалубочных .

Технология устройства монолитных стен при возведении зданий, построек и конструкций относится к категории наиболее распространенных способов современного строительства. Это обусловлено .

Ссылка на основную публикацию
Adblock
detector