Железобетонный каркас: сборный (основные элементы)

Железобетонный каркас: сборный (основные элементы)

Каркас из железобетона — 3 типа конструкций

Для быстрого сооружения объектов в строительной технологии применяется железобетонный каркас. Этот способ позволяет сэкономить рабочее время и финансы при возведении промышленных и жилых многоэтажных зданий. Каркасный дом можно построить и на приусадебном участке. Метод прост и унифицирован, его надежность проверена десятилетиями практического использования.

Типы конструкций

Сборно-монолитные сооружения

Технологическая схема предполагает использование жестких металлических колонн, забетонированных в фундаменты построек. Эти конструкции обеспечивают несущие способности дома. Покрывает здание крыша из железобетона. Строительство сборно-монолитных построек имеет преимущества:

  • Универсальность. Воплощается в реальность много архитектурных замыслов.
  • Высокая жесткость и устойчивость. Каркасные строения прочные из-за перекрытий из 2-х монолитных элементов, связанных между собой колоннами.
  • Много свободного пространства. Высота этажа составляет до 300 см, есть возможность выполнить перепланировку помещения.
  • Постепенное увеличение прочности. Железобетон по прошествии времени становится более прочным и долговечным.
  • Пожаробезопасность. Материал не подвержен воздействию огня.

Сборно-монолитные дома строятся на протяжении всего года. Заполнение опалубки в зимний период выполняют подогретым бетоном.

В зданиях такой конструкции перепланировка выполняется без особых затруднений.

Технология имеет минусы. Колонны из железобетона создают «мостик холода», преодолеть влияние которого можно с помощью теплоизоляционных мероприятий, что увеличит расходы на приобретение отделочных материалов и оплату за их монтаж. Чтобы построить объект монолитного типа с армированным каркасом, нужно использовать большое количество металлических стоек и сложную опалубку. Самостоятельное сооружение частной усадьбы по такой технологии затруднительно.

Монолитный каркас

Эти конструкции изготовляются прямо на месте строительства заполнением собранной опалубки бетонным раствором необходимой марки. Здания, построенные по этой технологии, прочные, устойчивы к механическим нагрузкам и выдерживают любую этажность. Используя опалубки разных конфигураций, можно предать конструкциям разные формы, делать колонны с сечением разной мощности. Каркас из железобетона монолитного вида перераспределяет нагрузки элементам сооружения, что позволяет экономно использовать стройматериалы. Чтобы защитить помещения от холода, при строительстве используют теплоизоляционные материалы.

Использование каркаса из сборных элементов позволяет применять для строительства небольшое количество стройматериалов, в отличие от монолитного способа. Здания собираются по принципу конструктора, при этом работы можно выполнять при минусовой температуре окружающей среды. Сборный железобетонный каркас обладает невысокой несущей способностью, поэтому в нем используются жесткие узловые соединения.

Конструкция имеет отрицательные особенности:

  • Рамный каркас не оказывает сопротивление перемещению конструкции по горизонтали. Поэтому вертикальные элементы должны стабилизировать устойчивость сооружения.
  • Унифицированность бетонных деталей. Это ограничивает выбор конфигурации строящегося объекта.

Технология этого вида строительства предусматривает 3 основных составляющих каркаса — ригель, колонна, основа лестничного проема. Бетонные детали изготовляются на специализированном предприятии, транспортируются на строительную площадку, где собираются. Конструкционные элементы изначально унифицируются, а формы соответствуют требования завода-изготовителя. Для монтажа в единое целое и закрепления стенных конструкций, кровли и прочих деталей используются металлические закладные приспособления.

Элементы конструкции соединяются по специальной методике.

Чтобы конструкции транспортировать и перемещать в процессе их изготовления монтируются петли для подъема из арматурных прутов марки А-1 или устраиваются вспомогательные отверстия.

Сферы применения

Метод строительства с использованием бетонных каркасных конструкций применяется в многих отраслях:

Нередко таким методом возводится МЖК.

  • Возведение много- и одноэтажных промышленных зданий.
  • Возведение административных объектов.
  • Строительство МЖК (многоквартирных жилых комплексов) и сооружений социально-бытовой сферы.
  • Монтаж индивидуальных усадьб.

Плюсы и минусы

Каркас из железобетона имеет позитивные и негативные свойства:

Элементы сборных железобетонных каркасов;

Классификация компоновочных и конструктивныхсхем каркасов

Общие сведения о каркасах

Каркасы жилых зданий

В зданиях с каркасной конструктивной схемой несущий остов включает элементы каркаса. Каркас состоит из вертикальных несущих конструкций – колонн, горизонтальных несущих конструкций – балок или плит и конструкций связей. В каркасных зданиях вся нагрузка воспринимается элементами каркаса, что позволяет чётко разделить основные конструкции зданий на несущие и ограждающие. Вследствие этого появляется возможность более эффективно использовать свойства материалов, т. е. несущие конструкции изготавливать из высокопрочных материалов, а ограждающие – из материалов, менее теплопроводных, влаго-, морозо- и коррозиестойких и обладающих хорошей звукоизоляционной способностью. К тому же несущие элементы каркасов размещаются внутри зданий, что защищает их от неблагоприятных воздействий внешней среды.

В каркасных зданиях имеется возможность более свободной планировки помещений, так как при каркасной конструктивной схеме отсутствуют внутренние несущие стены. Каркасы многоэтажных жилых зданий устраивают преимущественно из железобетона. Такие каркасы более долговечны, огнестойки и более экономичны по расходу стали.

Железобетонные каркасы жилых зданий могут быть сборными и монолитными. По сравнению с бескаркасными зданиями устройство сборных каркасов требует на 20–30 % больше стали, включая стыки и закладные детали. К тому же стоимость зданий со сборными каркасами на 5–10 % выше. При устройстве монолитных каркасов стоимость зданий снижается на 15–20 %, расход бетона до 20 % и стали до 20–25 %. Монолитные каркасы целесообразно выполнять в унифицированной сборно-разборной опалубке, что существенно снижает трудозатраты и расход лесоматериалов на её устройство.

В зависимости от материала несущих конструкций каркасы бывают:

· деревянные– в зданиях до 2 этажей;

· железобетонные – до 30 этажей;

· стальные – без ограничения по высоте, но наиболее целесообразны для высотных зданий.

В зависимости от конструктивной схемы каркасы бывают полными инеполными (см. п. 10.2). При устройстве полных каркасов колонны устанавливают внутри и по наружному периметру зданий. Балки в полных каркасах располагают поперёк здания (чаще всего) или вдоль здания либо перекрёстно. При устройстве неполных каркасов колонны устанавливают только внутри здания, а роль вертикальных несущих конструкций вместо колонн крайних рядов выполняют наружные продольные несущие стены. Балки в таких каркасах располагают поперёк (неполный поперечный каркас) или вдоль здания (неполный продольный каркас).

Каркасы в зависимости от их компоновки бывают однопролётными и многопролётными, одноэтажными и многоэтажными (рис. 5.1), а в зависимости от способа обеспечения жёсткости и устойчивости каркасы бывают (рис. 19.1):

а) рамной конструктивной схемы;

б) связевой конструктивной схемы;

в) рамно-связевой конструктивной схемы.

Жёсткость и устойчивость каркасов рамнойконструктивной схемы обеспечивается жёстким соединением вертикальных (колонн) и горизонтальных (балок или плит) элементов каркаса в узлах. Такие каркасы наиболее целесообразны в монолитном исполнении, но могут быть и сборными.

При связевой конструктивной схеме жёсткость и устойчивость каркаса достигается установкой продольных или поперечных связей или установкой связей в обоих направлениях. Связи могут быть в виде стальных диагональных или портальных конструкций, но чаще в виде сплошных железобетонных стенок (см. рис. 5.2), образующих в плане ломаные или замкнутые контуры (рис. 19.1).

Вертикальные связи каркасов называют вертикальными диафрагмами жёсткости и их устанавливают с шагом 24–36 м. В каркасах со связевой конструктивной схемой вертикальные нагрузки воспринимают в основном колонны каркаса, а горизонтальные – элементы связей.

Каркасы связевой конструктивной схемы целесообразны в сборном и монолитном вариантах, так как в этом случае форма и размеры сборных конструктивных элементов каркаса могут быть одинаковыми для всех этажей, т. е. балки одинаковой формы выполняют с одинаковым армированием и прочностью, а колонны нижних более нагруженных этажей устраивают с большим армированием и с более высокой прочностью бетона.

Рис. 19.1. Типы каркасов в зависи-мости от способа обеспечения жёст-кости и устойчи-вости: а – рамная; б – связевая; в – рамносвязевая; г – с ядром жёст-кости

В рамных и связевых каркасах многоэтажных зданий устраивают горизонтальные диафрагмы жёсткости, располагая их через несколько этажей в виде замоноличенных железобетонных перекрытий. Эти диафрагмы служат для перераспределения горизонтальных ветровых нагрузок между рамами или вертикальными связями.

В каркасах рамно-связевой конструктивной схемы жёсткость и устойчивость обеспечивается как элементами рам (жёсткими узлами), так и диафрагмами жёсткости (связями). Распределение усилий между элементами таких каркасов происходит в зависимости от жёсткости этих элементов. Рамно-связевая схема целесообразна в металлических и монолитных железобетонных каркасах, а сборные железобетонные каркасы такой схемы допускается применять при строительстве в сейсмоопасных районах или на просадочных территориях.

Членение сборных железобетонных каркасов на монтажные элементы зависит от многих факторов, основные из которых следующие:

1) технология изготовления;

2) условия транспортировки и монтажа;

3) надёжность работы узлов и соединений и каркаса в целом;

4) затраты труда и стоимость изготовления, транспортировки и монтажа.

Колонны каркасов могут быть высотой на один или два этажа или многоэтажными. Наиболее часто применяют колонны с двухэтажным членением, что снижает количество стыков по сравнению с одноэтажными колоннами и не усложняет технологию изготовления и транспортировки. По форме колонны бывают консольными, бесконсольными, Г- или Т-образной формы (рис. 19.2).

Рис. 19.2. Колонны сборных каркасов: I – одноэтажные; II – двухэтажные; а – колонны из крайних и средних рядов с консолями; б – колонны крайних и средних рядов со скрытыми консолями и с консолями балконов и лоджий; в – колонны крайних рядов Г-образной формы и средних рядов Т-образной формы; г – колонны одноэтажной разрезки (с платформенным стыком)

Рис. 19.3. Вари-анты стыков колонн: а – свар-ка выпусков ар-матуры с после-дующим обето-нированием сты-ков; б – на эпок-сидных полимер-растворах; в – платформен-ный; г – со сталь-ными оголовка-ми; д – на болтах с фрезерованны-ми опорными стальными пли-тами

Читать еще:  Бетон м450: состав, применение, характеристики

Поперечное сечение колонн может быть квадратным, прямоугольным, круглым, кольцевым, но чаще применяют квадратные колонны со стороной 300 мм (до 5 этажей) и 400 мм (свыше 5 этажей). Стыки колонн по высоте устраивают: сваркой выпусков арматуры с последующим омоноличиванием стыка; соединением оголовков колонн с помощью болтов или сварки; устройством платформенного стыка, т. е. колонны опирают друг на друга через опорные участки несущих элементов перекрытий (см. рис. 19.3). Для обеспечения удобства выполнения работ по стыковке колонн расстояние от перекрытия до стыка принимают 60–80 см.

Балки в каркасах могут быть длиной на пролёт или шаг между колоннами, иметь длину, равную величине проёма между Г- или Т-образными колоннами, а также могут быть многопролётными неразрезными. При выборе типа балок следует иметь в виду, что неразрезные балки чувствительны к точности монтажа и осадкам опор, но более экономичны по расходу материалов. Как указывалось выше, пролёт L – это расстояние между несущими вертикальными конструкциями (колоннами) поперёк здания, а шаг B – это расстояние между несущими вертикальными конструкциями (колоннами) вдоль здания.

Балки в каркасах могут иметь прямоугольное, тавровое (с полками вверху или внизу) и Z-образное поперечное сечение (рис. 19.4).

Рис. 19.4. Балки сборных каркасов: I – поперечные сечения балок; II, III – общие виды; а – парные прямоугольного сечения; б – одиночная прямоугольного сечения; в – тавровая; г – тавровая перевёрнутая; д, е, ж, и – варианты фасадных балок

Рис. 19.5. Типы опирания балок на стойки каркаса: а – на консоли; б – на торцы колонн (платформенный стык); в – в пазы-гнезда колонн; г – на скрытые консоли; д – на четверти консолей Г- и Т-образных колонн

Рис. 19.6. Варианты узлов соединения колонн и балок каркаса: а – с открытой консолью; б – со скрытой консолью; в – со сваркой стыковых стержней и последующим замоноличиванием; 1 – колонна; 2 – балка; 3 – открытая консоль; 4 – скрытая консоль; 5 – закладные детали; 6 – стыковые стержни; 7 – вставные стержни; 8 – сварка; 9 – раствор омоноличивания; 10 – шпонки

Опирание балок может выполняться на консоли колонн, на торцы колонн, на скрытые консоли и на четверти консолей Г- или Т-образных колонн (см. рис. 19.5). Варианты узлов соединения колонн и балок каркаса показаны на рис. 19.6.

Кроме рассмотренных балочных применяют и безбалочные каркасы, в которых плиты перекрытий опирают непосредственно на торцы колонн своими усиленными углами. В этом случае размеры плит в плане равны размерам ячейки каркаса (рис. 19.7).

Рис. 19.7. Вариант узлов сопряжения колонн и ребристых плит перекрытий в безбалочном каркасе: а – крайний ряд колонн, примыкающий к стене; б – то же, средний ряд; 1 – колонна вышележащего этажа; 2 – металлический оголовник; 3 – закладные элементы в опорных частях плит перекрытий; 4 – ребристые плиты перекрытий; 5 – колонна нижележащего этажа; 6 – отверстия для фиксирующего штыря

Рис. 19.8. Вариант вертикальной диаф-рагмы жёсткости каркаса: а – фрагмент диафрагмы жёсткос-ти; б – железобетон-ная стенка жёсткости; 1 – колонна; 2 – стенка жёсткости; 3 – места стыковых соединений; 4 – выступы и впадины горизонтального шпо-ночного стыка между смежными по вертика-ли стенками жёсткости; 5 – крайние стержни арматуры стенки; 6 – выпуск арматуры для соединения с колонной; 7 – пустотный настил

Вертикальные диафрагмы жёсткости представляют собой сплошные железобетонные стенки (при необходимости с дверными проёмами), имеющие в верхней части утолщение с одной или двумя полками для опирания плит перекрытий. С колоннами и между собой диафрагмы соединяют с помощью сварки закладных деталей и с последующим замоноличиванием вертикальных и горизонтальных швов, возможно шпоночного типа (рис. 19.8).

Основные элементы сборного железобетонного каркаса одноэтажного промздания

Он состоит из поперечных рам, объединённых в пространственную систему плитами (или прогонами) покрытия, связями и другими элементами. Под поперечными рамами в данном случае понимают жёстко защемлённые в фундаменты колонны и шарнирно опирающиеся на них стропильные конструкции (балки, фермы).

Шарнирное соединение ригелей и колонн обеспечивает универсальность конструкций. Так, колонны при этом можно использовать при различных пролётах и типах несущих конструкций покрытия (если усиление на колонну не превышает её несущей способности), а несущие конструкции покрытия – при различных типах и высотах колонн. Шарнирное опирание ригелей на колонны конструктивно проще жёсткого, хотя расход материалов при обоих вариантах примерно одинаков.

Помимо фундаментов, колонн, ригелей и связей в ж/б каркас одноэтажного здания входят фундаментные балки, подкрановые (при наличии мостовых кранов) и обвязочные (при стенах из мелких элементов), а также подстропильные конструкции, если шаг колонн больше шага стропильных конструкций.

Основные элементы стального каркаса

Он состоит из комплекса конструктивных элементов (колонны, стропильные и подстропильные фермы, подкрановые балки, прогоны, фахверк и связи), сочленённых между собой в пространственную геометрически неизменяемую систему. Основными несущими конструкциями здания являются поперечные рамы, состоящие из шарнирно (или жёстко) связанных между собой колонн и ригелей; колонны с фундаментами имеют обычно жёсткую связь.

Элементы стальных конструкций соединяют между собой, как правило, на сварке. С целью снижения трудоёмкости монтажа на стройке элементы каркаса соединяют на болтах (чёрных, чистых и высокопрочных), а сварку в основном применяют для усиления жёсткости узлов.

Элементы стального каркаса изготовляют из малоуглеродистых низколегированных и высокопрочных сталей, позволяющих снизить расход материала, облегчить конструкции и упростить форму. Экономия материала достигается также в случае применения эффективных профилей (гнутых, трубчатых и др.), преднапряжённых конструкций и т.п.

Фахверк и связи в промышленных зданиях

Помимо основных колонн в зданиях предусматривают фахверковые, устанавливаемые в торцах зданий и между основными колоннами крайних продольных рядов при шаге 12м и длине стеновых панелей 6м. Фахверковые колонны предназначены для крепления стен; они частично воспринимают массу стен и ветровые нагрузки.

Фахверковые колонны изготовляют железобетонные и стальные. Ж/б колонны имеют сечение от 300х300 до 400х600 мм; колонны кольцевого сечения имеют диаметр 300мм. Стальные колонны фахверка выполняют из сварных широкополочных двутавров.

Соединяют фахверковые колонны с фундаментами и диском покрытия на шарнирах. К фундаментам колонны крепят анкерными болтами. Верхние концы колонн торцового фахверка крепят к стропильным конструкциям, ветровым балкам или фермам, а продольного фахверка – к плитам покрытия и вертикальным связевым фермам. Такое соединение обеспечивает передачу ветровых нагрузок на каркас здания и исключает воздействие вертикальных нагрузок от покрытия на колонны фахверка.

Колонны железобетонного каркаса. Типы и характеристики

В зданиях без мостовых кранов устанавливают колонны без консолей, а в зданиях с мостовыми кранами – колонны с консолями, на которые опирают подкрановые балки. По расположению в плане различают колонны крайних и средних рядов; первые устанавливают так же в рядах, примыкающих к продольным температурным швам.

Они могут иметь прямоугольное и двутавровое сечение, а также быть двухветвевыми. По сравнению с колоннами прямоугольного сечения двухветвевые колонны имеют повышенную жёсткость, но они более трудоёмки в изготовлении. Применяют их в зданиях с высотой более 10,8м. На изготовление колонн двутаврового сечения бетона расходуется на 25-30% меньше, чем на колонны прямоугольного сечения.

Размеры колонн в поперечнике принимают: прямоугольного сечения – от 400х400 до 500х800 мм, двутаврового сечения – 400х600 и 400х800 мм, двухветвевых – от 400х1000 до 600х1900 мм. Ветви колонн сквозного сечения связаны распорками через 1,5-3,0 м по высоте.

В высоких зданиях можно монтировать колонны, состоящие по длине из двух-трёх частей, соединяемых сваркой закладных элементов и выпусков арматуры. Такие колонны удобны в изготовлении и транспортировке. В зданиях текстильной промышленности с шедовыми покрытиями можно устанавливать Г- и Т-образные колонны, позволяющие несколько уменьшить пролёт несущих конструкций покрытия.

В одноэтажных промышленных зданиях без мостовых кранов можно применять ж/б колонны кольцевого сечения. Наружные диаметры колонн – от 300 до 1000мм (через 100 мм), толщина стенок – 50 – 100 мм, масса колонн – от 1,2 до 9 т. При изготовлении таких колонн расход бетона снижается в 2 раза, стали – на 20 – 30%. Их целесообразно устанавливать в производственных зданиях с неагрессивной средой при высоте их от пола до низа несущих конструкций от 4,8 до 14,4 м.

Каркас из железобетона

Строительство – сложный и долгий процесс. Есть много методик, материалов и техник, которые используются в таком виде работ. Они отличаются в зависимости от того, будет ли сооружение жилым помещением, или строением для промышленных целей. Среди них – использование железобетонных каркасов. Это не новый и распространенный вид строительства, особенно часто применяемый для сооружения многоэтажных конструкций. Правильная техника строительства и качественные материалы обеспечат максимально возможную стойкость. Прочность и надежность таких строений доказана годами.

Преимущества и недостатки

Железобетонные каркасы применяется в строительстве как многоэтажных, в том числе высотных, конструкций, так и в сооружении небольших частных домов. В первом случае это техническая необходимость в силу прочности такого вида материала, во втором – экономично не обосновано, так как можно использовать более дешевые составляющие. К плюсам использования железобетонного каркаса в строительстве можно отнести:

  • хорошие несущие данные;
  • большой эксплуатационный период;
  • большую длину пролетов (6 м);
  • качественное изготовление составляющих каркаса полностью проводится на производствах, что обосновывает их надежность.
Читать еще:  Прочность бетона на сжатие, класс, таблица в мпа

Из-за того, что железобетонными каркасами можно создавать большие площадки, расширяется возможность в планировании внутреннего пространства. Среди недостатков можно назвать только большой вес конструкций.

Виды. Где используется в строительстве?

Каркасные железобетонные конструкции можно разделить на:

Каждый из этих видов лучше всего подходит для своего типа строительства и схема их установки полностью разные. Использование сборного железобетонного каркаса (серия 1.020) раньше ограничивалось только сооружениями для промышленных или административных целей, сейчас этот материал широко применяется для жилых помещений, так как удалось ввести в такую конструкцию гибкую внутреннюю планировку. Использование этого вида имеет свои плюсы:

  • применение небольшого количества материалов (как, например, в монолитном);
  • возможность работать при низких температурах.

Особенностью этого вида является то, что таким железобетонным каркасом обеспечивается невысокая несущая способность и в нем используются жесткие узлы. К минусам этого вида относиться:

  • рама каркаса не сопротивляется горизонтальному движению, отчего неизменяемость пространства зависит только от вертикальных элементов;
  • ограниченность в выборе формы конструкции из-за заводских стандартов.

Сборный железобетонный каркас составляют три элемента:

  • колоны;
  • ригели;
  • основы лестничных проемов.

Схема сборного железобетонного каркаса.

Эти элементы изготавливаются на производстве, после чего привозятся на строительство и собираются в единую конструкцию. Монолитные каркасы делают на строительной площадке путем заполнения опалубки конструкции бетонной смесью нужной марки. Преимущества использования:

  • нет ограничения по форме, местонахождению элементов в конструкции, сечению колонн;
  • прочность – способны выдержать любую нагрузку и количество этажей;
  • нагрузки между элементами в железобетонном каркасе рассредоточиваются, что дает возможность экономить используемые материалы (жесткие составляющие часть нагрузки с колон переносят на балки и перекрытия);
  • при возведении стен и перегородок используются материалы с высокими теплоизоляционными свойствами.

Для сооружения монолитной конструкции используют съемную опалубку, которая заливается бетоном. Это ускоряет строительные работы.

Технология строительства железобетонных каркасных конструкций

Есть разные типы сооружения помещений в зависимости от вида каркаса и этажности.

Сборные конструкции

При расчете каркаса многоэтажного сооружения используется расчетная схема с жесткими связями сдвига. Типы каркасов для высоких сооружений: рамные, связевые, комбинированные. Для перемещения составляющих каркаса при изготовлении в них закладывают монтажные петли или оставляют небольшие отверстия. Железобетонные каркасы сооружают, сваривая стальные детали.

Для сборных каркасов делают железобетонные фундаменты, в которые устанавливают колонны, расстояние между которыми 6 и 12 м. Балки для фундамента делают из бетонов марок 200-400. На укладываемые балки (длинна равняется шагу колонн) опираются несущие стены. Балки укладывают на ступенчатый фундамент таким образом, чтоб верхний уровень на 3 см был ниже уровня пола. Проемы между балками и колонами заливают бетоном. Заполнение проводят бетоном марки 100.

Колонны серии 1.020-1/87.

После фундамента делают гидроизоляцию (защита пола от промерзания и влияния грунтов на балки фундамента). При сооружении больших конструкций необходимо использовать колонны 1.020. Они способны выдержать нагрузку до 500 т (примерно 10 этажей при усилении в стыке). Чтоб изготовить жесткий диск перекрытия, необходимо установить приваренные ригели в одну, которые направлены в одну сторону, и связанные плиты по колонных рядах.

Ячеисто-бетонные блоки лучше всего подходят для наружного стенового ограждения железобетонных каркасных сооружений. Их выкладывают одним рядом, с нулевой жесткостью, что помогает сохранить пластичность фасадов. Наружные стены устанавливают на плиту перекрытия или ригели. Таким образом, нет ограничения по количеству этажей здания.

Если внешние стены сооружаются из мелких блоков, то они могут выкладываться как в один слой, так и многослойно. При конструировании таких строений необходимо следить, чтоб кладка не была опорой для каркаса. Толщину стен выбирают, учитывая теплоизоляционные требования: для жилых домов толщина наружной стены должна быть 50 см (прочность В 2.5, морозостойкость F 25).

Для кладки внутренних стен и перегородок между квартирами и других внутренних элементов также используют ячеисто-бетонные блоки. Эти перегородки проектируются для каждого этажа самонесущими. При планировании толщины стен и перекрытий основным требованием является звукоизоляция (больше 50 дБ), которая определяется согласно нормативным документам. Этот параметр зависит от блоков, раствора, бетона и т. д. Для улучшения звукоизоляции могут использовать заполнение промежутков минплитой (плотность 80-100 кг /м3).

Перегородки между комнатами выполняют толщиной 12 см из ячеистых блоков (звукоизоляция не меньше 43 дБ).

При кладке стен в комнатах, где предполагаемая влажность повышена (например, ванная комната), необходимо использовать защиту для ячеистых блоков от влаги и пара. Отделочные наружные работы необходимо проводить после полного естественного высыхания здания, иначе влажность с блоков будет выходить внутрь помещения.

Расчетной схемой одноэтажного железобетонного каркасного промышленного здания является рама, в которой ригели и колонны скрепляются при помощи шарнирного соединения. При строительстве монолитного каркасного здания в первую очередь делают опалубку, потом делают необходимый раствор и делают заполнения опалубки бетононасосом.

Сборно-монолитные каркасы

Колонны ставятся в отверстие в железобетонной плите. На плиту ставятся многопустотные панели, на них – пролетные панели. Арматурная сетка межколонных панелей сваривается с армопрутьями пролетных панелей, после чего происходит заполнение бетонной смесью.

Повышение эффективности монолитного каркасного жилья

Не смотря на то, что монолитный каркас уже широко используется в строительстве, его функциональные свойства стараются постоянно повысить. Строители пытаются сделать его более прочным, уменьшить расход материалов. Одним из способов достижения такой цели является использование бетона более высокой марки. Это уменьшает расход арматуры в каркасах, отчего расход на материалы уменьшается. Эффективность каркаса достигается, если армирование составляет больше 3%. Оптимизация монолитного железобетонного каркаса происходит по:

  • марке бетона;
  • сечению ж/б составляющих;
  • количеству арматуры в бетоне.

В сооружении монолитных каркасных зданий используют метод, при котором коробку конструкции заглубляют в землю на глубину до 2 этажей. При этом все здание замоноличено. Такая техника позволяет упрочнить конструкцию, так как нагрузки передаются пластовым грунтам (они высокопрочные).

Стоимость такого здания очень большая (опалубка, техника и т. д.), отчего при строительстве одноэтажных (2-3) сооружений используется редко. Для таких конструкций чаще используют сборные железобетонные каркасы, что дешевле и они достаточно прочны для такой высоты.

Заключение

Железобетонные каркасы – наиболее подходящий материал для возведения многоэтажных зданий. Такая конструкция является прочной и выдерживает большой вес и этажность. Каркасы бывают сборными, сборно-монолитными и монолитными, каждый из них подходит для конкретного вида строительства. Не так давно сборные каркасы использовались только для промышленных или административных целей.

Использование такого материала для небольших, например, одноэтажных, сооружений нецелесообразно из-за большой стоимости материалов и работ. Техника конструирования железобетонных каркасных зданий проектируется до каждой мелочи, что обеспечивает надежность и стойкость таким сооружениям. При возведении таких зданий необходимо учитывать нормативы, которые законом установлены для разных помещений.

Сборный железобетонный каркас многоэтажного промышленного здания. Характеристика, основные элементы и конструктивные особенности.

Каркас многоэтажных промышленных зданий состоит из колонн и балочных или безбалочных междуэтажных перекрытий и покрытия. В зданиях с балочными перекрытиями ригели и колонны связаны между собой в узлах сваркой закладных деталей, т. е. шарнирно, в этом случае каркас в целом воспринимает только вертикальные нагрузки.

Такая конструктивная схема здания называется связевой. Ветровые и другие горизонтальные нагрузки воспринимают перекрытия, которые передают их на торцовые стены и стены лестничных клеток. Иногда устраивают специальные стены или диафрагмы для обеспечения жесткости и устойчивости каркасного здания связевой системы.

Многоэтажные здания могут также иметь каркас рамной конструкции. В этом случае поперечными железобетонными рамами с жесткими узлами обеспечивается пространственная жесткость здания.

Балочная схема многоэтажных зданий является наиболее распространенной. При этой схеме в поперечном направлении располагаются ригели, опирающиеся на консоли колонн, а по ригелям укладываются сборные железобетонные ребристые или пустотелые настилы. Настилы, укладываемые вдоль разбивочных осей ряда колонн, имеют вырезы для пропуска колонн (рис. 84). Ригели имеют тавровое поперечное сечение. В некоторых случаях для уменьшения высоты перекрытия применяют ригели трапецеидального сечения с четвертями для опирания настилов.

Рис. 84. Многоэтажное здание с балочными перекрытиями

Колонны делают высотой на этаж, при этом стыки колонн располагаются не в уровне междуэтажного перекрытия, а на 60 см выше него. Для унификации размеров всех сборных элементов сечения колонн, ригелей и настилов перекрытий всех этажей принимают одинаковыми. Узлы и стыки сборных элементов выполняются сваркой закладных стальных частей с последующим замоноличиванием (рис. 85).

Рис. 85. Сопряжение элементов каркаса. а — ригелей и настилов; б, в — ригелей с колоннами; 1 — колонна; 2 — ригель; 3 — настил.

Стальные планки, заложенные в нижнем поясе ригелей, привариваются к планкам, заложенным в консоли колонн. Планки в консолях шире планок ригелей, благодаря чему сварные швы накладываются в нижнем положении, самом удобном для производства сварочных работ. Поверху ригели соединяются стыковыми накладками, которые обнимают колонну с двух сторон и привариваются к закладным планкам верхнего пояса ригелей. Вертикальные зазоры между торцами ригелей и колонной заполняют бетонной смесью на мелком гравии или цементным раствором. Элементы настила соединяются с ригелями сваркой закладных деталей.

Читать еще:  Монолитный керамзитобетон: заливной дом (стены) своими руками

Вместо ригелей могут быть применены парные прогоны, которые опираются на консоли вдоль разбивочных осей колонн. На прогоны укладываются многопустотные настилы. Швы между элементами настила замоноличиваются. Перекрытие получается с гладким потолком, что является большим преимуществом перед перекрытием с ребристым настилом.

Безбалочная схема многоэтажных промышленных зданий в сравнении с балочной обеспечивает большую полезную высоту помещений так как само перекрытие имеет меньшую высоту (рис. 86). Сетка колонн 6 X 6 м.

Рис. 86. Многоэтажное промышленное здание со сборными безбалочными перекрытиями.

Основные несущие элементы безбалочного перекрытия — это колонны с капителями, на которые опираются многопустотные надколонные панели толщиной 30 см. На надколонные панели в свою очередь опираются пролетные панели перекрытия толщиной 16 см. Капители имеют форму усеченной пирамиды с квадратным основанием и с отверстием посередине, через которое проходит колонна. Капитель выполняет роль обоймы стаканного типа, которая охватывает верхушку колонны, опирается на консоли колонны и скрепляется с ними путем приварки закладных деталей.

Поэтажный стык колонн осуществляется в пределах капители. Сборные безбалочные перекрытия сложны в монтаже и неэкономичны по расходу бетона и стали, поэтому применяются редко. Более экономичными являются сборно-монолитные безбалочные перекрытия, которые устроены следующим образом: плоская железобетонная плита с отверстием посередине для пропуска колонны служит капителью; на капители опираются межколонные предварительно напряженные многопустотные панели, на которые в свою очередь опираются пролетные панели (рис. 87).

Рис. 87. Сборно-монолитное безбалочное перекрытие. а — план; б — разрез.

По межколонным панелям укладывается арматурная сетка, которая сваривается с выпусками арматуры пролетных панелей и заполняется бетоном. Такая сборно-монолитная конструкция безбалочного перекрытия благодаря тому, что элементы не разрезаны, отличается большой жесткостью. Достоинство сборно-монолитного перекрытия — значительно меньший расход бетона и стали по сравнению со сборным; недостаток — применение монолитного бетона.

Элементы сборных железобетонных каркасов

Членение сборных железобетонных каркасов на монтажные элементы зависит от многих факторов и основные из них следующие:

1) технология изготовления;

2) условия транспортирования и монтажа;

3) надежность работы узлов и соединений и каркаса в целом;

4) затраты труда и стоимость изготовления, транспортирования и монтажа.

Колонны каркасов могут быть высотой на один или два этажа или многоэтажными. Наиболее часто применяют колонны с двухэтажным членением, что снижает количество стыков по сравнению с одноэтажными колоннами и не усложняет технологию изготовления и транспортирования. По форме колонны бывают консольными, бесконсольными и Г- или Т-образной формы (рис. 19.2.).

Поперечное сечение колонн может быть квадратным, прямоугольным, круглым, кольцевым, но чаще применяют квадратные колонны со стороной 300 мм (до 5 этажей) и 400 мм (свыше 5 этажей). Стыки колонн по высоте устраивают или сваркой выпусков арматуры с последующим омоноличиванием стыка, или соединением оголовников колонн с помощью болтов или сварки, или устрой- ством платформенного стыка, когда колонны опирают друг на друга

Рис. 19.2. Колонны сборных каркасов:

I – одноэтажные; II – двухэтажные; а – колонны из крайних и средних рядов с консолями; б – колонны крайних и средних рядов со скрытыми консолями и с консолями балконов и лоджий; в – колонны крайних рядов Г- образной формы и средних рядов Т-образной формы; г — колонны одноэтажной разрезки (с платформенным стыком)

через опорные участки несущих элементов перекрытий (рис. 19.3.). Для обеспечения удобства выполнения работ по стыковке колонн расстояние от перекрытия до стыка принимают 60-80 см.

Балки в каркасах могут быть длиной на пролет или шаг между колоннами, иметь длину, равную величине проема между Г- или Т-образными колоннами, а также могут быть многопролетными неразрезными. При выборе типа балок следует иметь ввиду, что неразрезные балки чувствительны к точности монтажа и осадкам опор, но более экономичны по расходу материалов. Пролет – это расстояние между несущими вертикальными конструкциями (колоннами) поперек здания, а шаг – вдоль здания.

Рис. 19.3. Варианты стыков колонн:

а – сварка выпусков арматуры с последующим обетонированием стыков; б – на эпоксидных полимеррастворах; в – платформенный; г – со стальными оголовниками; д – на болтах с фрезерованными опорными стальными плитами

Балки в каркасах могут иметь прямоугольное, тавровое с полками вверху или внизу, Z-образное поперечное сечение (рис. 19.4.).

Рис. 19.4. Балки сборных каркасов:

I – поперечные сечения балок; II,Ш – общие виды; а – парные прямоугольного сечения; б – одиночная прямоугольного сечения; в – тавровая; г – тавровая перевернутая; д,е,ж,и– варианты фасадных балок

Опирание балок может выполняться на консоли колонн, на торцы колонн, на скрытые консоли и на четверти консолей Г- или Т-образных колонн (рис. 19.5.). Варианты узлов соединения колонн и балок каркаса показаны на рис. 19.6.

Рис. 19.5. Типы опирания балок на стойки каркаса:

а – на консоли; б – на торцы колонн (платформенный стык); в – в пазы-гнезда колонн; г – на скрытые консоли; д – на четверти консолей Г- и Т-образных колонн

Рис. 19.6. Варианты узлов соединения колонн и балок каркаса:

а – с открытой консолью; б – со скрытой консолью; в – со сваркой стыковых стержней и последующим замоноличиванием; 1 – колонна; 2 – балка; 3 – открытая консоль; 4 – скрытая консоль; 5 – закладные детали; 6 – стыковые стержни; 7 – вставные стержни; 8 – сварка; 9 – раствор замоноличивания; 10 – шпонки

Кроме выше рассмотренных балочных применяют и безбалочные каркасы, в которых плиты перекрытий опирают непосредственно на торцы колонн своими усиленными углами, и в этом случае размеры плит в плане равны размерам ячейки каркаса (рис. 19.7.).

Рис. 19.7. Вариант узлов сопряжения колонн и ребристых плит перекрытий в безбалочном каркасе:

а – крайний ряд колонн, примыкающий к стене; б – то же, средний ряд; 1 — колонна вышележащего этажа; 2 – металлический оголовник; 3 – закладные элементы в опорных частях плит перекрытий; 4 – ребристые плиты перекрытий; 5 — колонна нижележащего этажа; 6 – отверстия для фиксирующего штыря

Рис. 19.8. Вариант вертикальной диафрагмы жесткости каркаса:

а – фрагмент диафрагмы жесткости; б – железобетонная стенка жесткости; 1 – колонна; 2 – стенка жесткости; 3 – места стыковых соединений; 4 – выступы и впадины горизонтального шпоночного стыка между смежными по вертикали стенками жесткости; 5 – крайние стержни арматуры стенки; 6 – выпуск арматуры для соединения с колонной; 7 – пустотный настил

Вертикальные диафрагмы жесткости представляют собой сплошные железобетонные стенки при необходимости с дверными проемами, имеющие в верхней части утолщение с одной или двумя полками для опирания плит перекрытий. С колоннами и между собой диафрагмы соединяют с помощью сварки закладных деталей и с последующим замоноличиванием вертикальных и горизонтальных швов, возможно шпоночного типа (рис. 19.8.).

Деформационные швы

Здания в зависимости от природно-климатических и геологических условий строительства, а также в зависимости от объемно-планировочных и конструктивных решений могут расчленяться вертикальными швами, которые бывают температурно-усадочными, осадочными и антисейсмическими (рис. 20.1.).

Рис. 20.1.Деформационные швы:

а – температурно-усадочный; б – осадочный в местах резкого перепада этажности; в – осадочный в мессах значительной неравномерности деформаций основания; г – антисейсмический

Температурно-усадочные швы устраивают для предотвращения образования произвольных трещин и перекосов в конструктивных элементах зданий из-за колебаний температуры и усадки материалов (бетона, каменной кладки и др.). Эти швы разрезают или разделяют конструкции только надземной части зданий. В наружных стенах температурно-усадочный шов выполняют в виде штрабы (паза и гребня) или в виде четверти с зазороми 20-25 мм, утепленными просмоленной паклей, завернутой в толь, или гернитовым шнуром (рис. 20.2.). Размеры температурно-усадочных отсеков от 50 до 200 м в зависимости от материала несущих конструкций остова здания и климатических условий района строительства.

Рис. 20.2. Конструктивное решение деформационных швов в наружных стенах:

а – в виде штрабы (с пазом и гребнем); б – в виде четверти; 1 – стена; 2 – пакля; 3 – рулонный гидроизоляционный материал

Осадочные швы устраивают в местах резкого перепада этажности зданий или при возможной значительной неравномерности деформаций основания по длине здания из-за различных деформативных характеристик грунта основания под фундаментом здания. В зданиях, имеющих участки различной этажности, осадочные швы устраивают в надземной части, аналогично температурно-усадочным швам, а при неоднородных грунтах оснований осадочные швы устраивают по всей высоте здания, включая и фундаменты. В этом случае на месте осадочного шва в бескаркасных зданиях предусматривают внутренние парные поперечные стены на отдельных фундаментах, а в каркасных – парные колонны. В фундаментах

Рис. 20.3. Варианты устройства деформационных швов в наружных стенах в местах примыкания поперечных стен:

а – при спаренных поперечных стенах; б – при одиночной поперечной стене; 1 – стена; 2 – утеплитель, завернутый в гидроизоляционный материал

швы заполняют водонепроницаемым материалом (асфальтобетон, битум), а в надземной части наружных стен эти швы выполняют аналогично температурно-усадочным (рис. 20.3.).

Антисейсмические швы разделяют здание на отдельные изолированные отсеки по всей высоте и их выполняют аналогично осадочным швам при неоднородных грунтах оснований.

Ссылка на основную публикацию
Adblock
detector