Коррозия бетона: виды (сульфатная, биологическая), защита

Коррозия бетона: виды (сульфатная, биологическая), защита

Коррозия бетона

Изначально термин «коррозия» применялся только в отношении металлов. Позже его стали употреблять касательно других материалов и изделий из них. Главный синоним коррозии – разрушение. А этому процессу подвержены практически все строительные конструкции под влиянием различных внешних факторов.

В частности коррозия бетона – это распад его структуры, потеря плотности, прочности и, как следствие, утрата эксплуатационных качеств. Разрушение бетонных элементов начинается с рассыпания или расслоения цементного камня, поскольку заполнители более стойки к агрессивным воздействиям.

Виды коррозии бетона

Вредное, разрушительное влияние на бетон могут оказывать атмосферные осадки, содержащие кислоты и даже воздух поблизости от многих промышленных предприятий (газовая коррозия). А также вода из рек, морей, грунта, дренажных систем и стоков. Когда конструкция выполнена из армированного бетона, то к внешним факторам добавляется еще и опасность возникновения коррозионных процессов в арматуре.

В зависимости от характера содержащихся во внешней среде примесей коррозия бетона и железобетона делится на три типа:

  • 1 вид коррозии – разложение цементного камня в результате выщелачивания гидроксида кальция. Этот элемент может присутствовать в бетонной смеси с момента ее формовки, либо образоваться в процессе воздействия на готовую конструкцию воды с вредными примесями. Са(ОН)2 – это компонент, который легче всего растворяется и быстрее всего вымывается из тела бетона, тем самым разрушая его.
  • 2 вид – подразумевает распад цементного камня от взаимодействия с кислотами. Этот тип называют химической коррозией В этом случае в конструкции происходит вымывание легкорастворимых известковых продуктов, либо проистекает процесс, обратный этому.Под воздействием агрессивных вод в теле бетона образуются осадки, не обладающие вяжущими свойствами. В результате изделие теряет прочность и превращается в слабую рыхлую массу. В эту категорию можно включить щелочную коррозию, которую вызывает избыток противоморозных добавок при формировании бетонной смеси.
  • 3 вид коррозии – это процесс, при котором под воздействием кислоты образуется соединение кальция, не растворимое в воде. СаСО2 или CaSO4 постепенно заполняет свободные поры в массе бетона, увеличивая его объем, что в результате приводит к разрушению конструкции. Из всех видов 3 категории на практике чаще всего встречается сульфатная коррозия.

Понятно, что такое разделение является условным, так как не всегда можно с большой точностью определить, что именно повлияло на разъедание конкретного сооружения.

Коррозионные процессы происходят обычно под влиянием совокупности различных факторов и одновременно может совершаться несколько категорий разрушений.

В том числе значительное влияние на целостность конструкции оказывает отсутствие или наличие коррозии арматуры в железобетоне.

Что приводит к ржавлению арматурного каркаса

Существует несколько причин появления ржавчины на металле внутри бетонной массы. И далеко не всегда это внешние воздействия.

  • Внутреннюю коррозию может вызвать наличие большого количества агрессивных компонентов в воде, которой затворяют бетонную смесь. Кроме того, для создания армированного бетона нельзя использовать состав, содержащий более 2% (от массы цемента) хлористого кальция. Поскольку этот элемент значительно ускоряет коррозию арматуры в бетоне при эксплуатации в любой среде.
  • Немаловажное значение имеет плотность укладки бетонной смеси. Дело в том, наличие большого количества пор, пустот, раковин дает возможность влаге и воздуху проникать внутрь изделия, к арматурному каркасу. В результате на различных участка металлического контура возникают разные электрические потенциалы, что приводит к электрохимической коррозии.
  • Понятие физическая коррозия связано с разрушением бетона в результате его попеременного замораживания и оттаивания. Избежать этой неприятности можно, создав благоприятные условия во время набора бетоном прочности до заданной величины.

Чтобы правильно оценить ситуацию и принять меры для ее исправления, необходимо понять уровень угрозы. Для определения степени коррозии арматуры и бетона применяются физико-химические способы:

  • Изучение состава компонентов, вновь образованных в бетонной массе под воздействием агрессивных веществ. Исследования выполняются в лаборатории при помощи дифференциально-термической и рентгено-структурной диагностики на специально отобранных образцах.
  • Проведение визуального осмотра измененной структуры бетона в конструкции, используя увеличительную лупу. Этот способ позволяет выявить многие поверхностные дефекты.
  • Мощные микроскопы помогают обнаружить характер расположения и соединения элементов цементного камня с зернами заполнителей. А также состояние контакта бетона с арматурой, габариты и направление распространения трещин.

Для определения прочностных характеристик эксплуатируемых конструкций из бетона и железобетона применяются неразрушающие методы контроля в соответствии с рекомендациями и требованиями ГОСТ 18105-86.

Как защитить бетон от коррозии

Методы защиты бетонных и железобетонных конструкций от разрушений из-за ржавчины можно разделить на такие варианты:

  • Подкорректировать состав бетонной смеси таким образом, чтобы увеличить его прочностные характеристики, а также устойчивость к вредному влиянию условий эксплуатации. Достичь этого можно использованием специальных добавок или вяжущего с особыми свойствами. Например, белитового цемента, понижающего степень образования гидроксида кальция.
  • Употреблять средства по защите арматуры в бетоне от коррозии в процессе формирования стального каркаса.
  • Обработать внешние поверхности конструкций гидравлическими смесями.
  • Использовать меры по покрытию бетона антикоррозионными препаратами, обладающими свойством глубокого проникновения в тело изделия.

Существует много причин для образования коррозии железобетона, и меры защиты также бывают разными. Их делят на первичные и вторичные. К первым относятся мероприятия, по приданию бетонной смеси улучшенных характеристик. Применяются добавки, оказывающие стабилизирующее, гидроизоляционное действие, а также пластификаторы, биоциды и многое другое. К таким относятся:

  • сульфатно-дрожжевая бражка;
  • кремнийорганический препарат;
  • мылонафт.

В эту же категорию можно включить способы и средства, защищающие металл внутри массы железобетонных изделий. Обычно это антикоррозийные препараты.

Вторичную защиту бетона от коррозии обеспечивает внешнее покрытие бетонных конструкций лакокрасочными, мастичными материалами, либо пропитками с уплотняющими свойствами.

Хороший результат дает гидроизоляционное оклеечное покрытие. Однако наилучшего эффекта можно добиться, используя первичную и вторичную защиту в совокупности.

Коррозия в любом своем проявлении опасна для построек из бетона и железобетона. Поэтому очень важно соблюдать нормы и правила возведения зданий, сооружений. Применять необходимые защитные меры, препятствующие ржавлению конструкций.

Защита бетона от коррозии

Коррозийным разъеданием подвергаются многие строительные материалы, в том числе и бетон. Она представляет собой разрушение металлов под воздействием физико-химических или химических факторов окружающей среды. Чтобы предотвратить разрушение в сооружениях из бетона и железобетона существуют различные методы защиты. Это могут быть покрытия поверхности с помощью специального стойкого материала или разнообразными лаками, пропитками.

Определение коррозии

Коррозия представляет собой разъедание строительных материалов под влиянием физических, химических и биологических факторов при контакте с окружающей средой. Бетон имеет в своем составе наименее прочный компонент – это цементный камень. Именно с этой части материала начинается коррозийный процесс. Разрушение случается в результате воздействия различных видов вод, а именно:

  • сточных;
  • вод в траншеях или трубах;
  • морских;
  • речных;
  • грунтовых.

Наиболее опасны для бетонов грунтовые воды вблизи промышленных предприятий из-за наличия в них химических выбросов. Также при воздействии с бетоном и железобетоном наносят им весомый вред сточные воды. Коррозия бетона воздействует на гидротехнические сооружения, загрязняет воздух, однако, такая концентрация газа в окружающей среде не вредит здоровью человека, но способствует разрушению бетонных конструкций.

Разрушения строительных материалов разнообразны и могут находиться разрушающие микроорганизмы как в прямом контакте, так и внутри структур. Ускоряется разъедание в бетоне при повышенной влажности окружающей среды.

Виды и описание

Существуют разновидности бетонной коррозии:

  • Радиационная, которая зависит от дозы ионизирующего облучения и количества цементного камня. Вследствие чего искажается кристаллическая решетка минералов, расширяется заполнитель, который приводит к микротрещинам, макротрещинам в материале, а в дальнейшем к полному разрушению.
  • Химическая, происходящая вследствие атмосферных осадков и под воздействием углекислого газа, входящий в состав воздуха. Таким образом, в строительстве бывает газовая коррозия, которая особенно актуальна при большом количестве влаги.
  • Биологическая. Разъедания, связанные с биологической коррозией, появляются в результате воздействия химических веществ, получившиеся при эксплуатации бетонных конструкций.
  • Физико-химическая коррозия появляется в результате замерзания воды. В жидком состоянии вода попадает в поры материала, а в результате минусовых температур она замерзает. Образовавшийся лед расширяется и распирает постройки, в итоге образуются трещины.

Вернуться к оглавлению

Химические разъедания

Образуются под взаимодействием бетонного камня с веществами окружающей среды. Процессы химической коррозии относятся к трем категориям:

  • В результате кристаллизации материалов происходит растрескивание. Трещины являются последствием расширения объема материала из-за низких температур.
  • Выщелачивание мягкими водами с последующим образованием белого налета.
  • Цементная бацилла, которая является последствием влаги, разрушает бетонные конструкции. На них образуются трещины и растрескивания.

Вернуться к оглавлению

Физико-химическая

В этом случае цементный камень расходится в воде. В результате чего гидроксид кальция вымывается или растворяется. Растворение железобетона из-за воздействия воды случается с различной быстротой. Так, например, плотные массивные конструкции подвластны коррозии лишь по истечении многих десятилетий. В сооружениях с тонкими оболочками, вымывание кальция случается уже через 2-3 года. В момент прохождения вод через бетон, процесс разложения ускоряется во много раз, и уменьшаются прочностные характеристики материала.

Биологические разрушения

Коррозия с образованием больших объемов биологических соединений в камне, является итогом влияния проникающих в бетон различных веществ. Это способствует появлению внутреннего напряжения и трещин в бетонной конструкции. Биологическая коррозия определяется наличием на цементном камне бактерий, мхов, грибков или лишайников.

Биологические разрушения развиваются из-за прямого контакта микроорганизмов с материалом. А также биоорганизмы, которые могут нанести вред материалу, находясь на расстоянии. Развиваются биологические коррозии в условиях техногенной среды с большим содержанием влаги в атмосфере.

Радиационная

Коррозия бетона бывает радиационной, которая возникает в результате радиационного излучения. Она способствует удалению из бетонной конструкции кристаллизованной жидкости и тем самым приводит к нарушению прочности структуры. Продолжительное воздействие радиационного облучения приводит к жидкому состоянию кристаллических веществ. Появляется напряжение в бетонном растворе, и возникают трещины.

Читать еще:  Заливка бетона: технология и советы

Факторы влияния

Коррозия бетона возникает под воздействием следующих обстоятельств, от которых зависит скорость разрушения зданий и сооружений:

  • умение поверхности бетонного раствора противодействовать веществам;
  • пористость материала;
  • вещества, находящиеся в атмосферных осадках;
  • капиллярность.

Главная составляющая бетона – это его пористость, которая определяет количество пор и наличие плотности в структуре материала. От пористости бетона зависит возможность влагопоглощения конструкции при таянии снежных масс или других атмосферных осадков. Материал со значительным количеством пор подвластен большей возможности разрушения в результате физико-химической коррозии. Поэтому защита бетона от коррозии должна начинаться на начальном этапе постройки зданий и сооружений, ведь все виды коррозии бетона приводят к разрушению построек.

Антикоррозийная защита

Виды коррозийных разрушений бетона различны и многообразны. Многих строителей интересует вопрос защиты бетонных конструкций от влияния негативных внешних факторов окружающей среды.

Зачастую подвергаются разрушению верхние слои бетона, тогда защита заключается в применении бетона с небольшим количеством капилляров в его структуре. Используя препарат от возникновения трещин еще на начальном этапе строительства, это поможет уберечь сооружения от выщелачивания и вымывания.

Защита от разрушений в виде ржавчины разделяется:

  • способы, изменяющие состав бетона, при этом, делая его более прочным и устойчивым к негативным воздействиям окружающей среды;
  • мероприятия, связанные с покрытием поверхности материала гидравлическими препаратами;
  • комбинированные мероприятия, которые включают в себя покрытие бетона антикоррозийным препаратом с дальнейшим его проникновением вглубь материала.

Применение в состав бетона белитового цемента позволит снизить количество выделяемого гидроксида кальция, что способствует испарению жидкости. Такой компонент позволит уплотнить материал и тем самым прекратит проникновение жидкости через бетонный раствор.

Еще один вид разрушения бетонного сооружения от ржавчины – сульфатная коррозия бетона. Она появляется в результате взаимосвязи сульфатов с камнем в цементе раствора. Разрушение наблюдается в виде искривлений конструкции и распирания конструктивных элементов.

Металлические части конструкции покрывают специальными защитными материалами.

Коррозию бетона, возникшую из-за воздействия вод, предотвращают разными путями. Используют разнообразные добавки, препараты на начальном этапе приготовления бетонного раствора: водоотводы или гидроизоляцию.

Защита бетона от разъеданий подразделяется на: первичную и вторичную. Также подвластны воздействию разъедания ржавчиной сооружения из железобетона. Для их спасения применяют ингибиторы металлической коррозии в момент приготовления бетонного раствора. Таким образом, на составляющих из железобетона образуется пленка, которая останавливает контакт металла с бетоном.

Данная защита обусловлена введением дополнительных препаратов в состав бетонной смеси в процессе его приготовления. Такой способ позволит изменить состав смеси и убережет в дальнейшем здания и сооружения от разрушений.

Применяют разнообразные стабилизирующие, гидроизоляционные, пластифицирующие, биоцидные и другие препараты. При выборе вспомогательных препаратов для изготовления раствора отталкиваются от условий эксплуатации бетонного камня. Например, при изготовлении цементного раствора в водах с большим содержанием сульфата снижают количество свинца.

Что используется?

Улучшают бетонный раствор и его прочностные характеристики химические препараты. Они позволяют сократить в порах агрессивные вещества, которые замедляются при движении. А, значит, коррозия арматуры в бетоне подвергается меньшим разъеданиям. Используя химические препараты в качестве добавок в цементный раствор, увеличивают замкнутость пор. Благодаря этому образуется высокая морозостойкость бетона и железобетона. Используют химические добавки: противоморозные, воздухопоглощающие, уплотняющие, замедлители схватывания.

Применение добавок в бетонную смесь, которые повышают морозостойкость.

Применяют добавки, которые способны улучшить сразу пару показателей или, наоборот, один улучшают, другой снижают. Для защиты бетонных сооружений от разъедания его составляющих ржавчиной используют такие добавки:

  • сульфатно-дрожжевую бражку;
  • мылонафт;
  • кремнийорганическую жидкость.

Вернуться к оглавлению

Вторичная защита от разрушений ржавчиной бетонных сооружений и зданий из железобетона заключается в защитном покрытии верхнего слоя цементного камня. Защита состоит из лакокрасочных покрытий и уплотняющей пропитки. Также к ней относят выдержу бетона определенное время на воздухе.

Что используется?

Вторичная защита включает в себя следующие добавки, при которых разъедание ржавчиной бетонных построек сводится к минимуму:

  • пропитки с уплотнением;
  • покрытия красками и акрилами, с помощью которых образуется защитная пленка;
  • защита мастиками, которая актуальна при большом воздействии на бетонный раствор влаги;
  • защита оклеиванием полиизобутиленовыми пластинами;
  • биоцидные добавки, которые оберегают сооружения от грибков, плесени и микроорганизмов. Большего эффекта можно добиться, используя первичную и вторичную защиту в комплексе.

Вернуться к оглавлению

Заключение

Коррозийные воздействия опасны для бетонных зданий и сооружений из железобетона. Важно следить за постройками и всячески предотвращать появление разъедающей ржавчины. Иначе постройка, на которую ушло много сил и финансов, может полностью пасть. На рынке строительных материалов присутствует множество различных добавок, которые способны спасти постройку от разрушений.

Главное, принять меры как во время работы и в момент приготовления раствора, так и поддерживать сооружения в дальнейшем, чтобы коррозия бетона не разрушила все труды.

Коррозия бетона (железобетона, цемента): виды (сульфатная, биологическая), защита

Коррозия бетона – процесс разрушения элементов и конструкций из данного материала под воздействием на структуру монолита разнообразных внешних негативных факторов: агрессивных сред, физико-химических процессов, внутренних изменений. Изначально термин «коррозия» использовали исключительно касательно металлов, но потом само понятие стали применять и для других материалов, изделий.

Основное значение любой коррозии – это разрушение. И данному негативному процессу подвержены почти все строительные конструкции, на которые оказывается то или иное влияние. Наиболее разрушительны внешние факторы, но часто причиной коррозии становится и прохождение различных внутренних процессов.

Коррозия бетонных конструкций предполагает распад структуры монолита с потерей прочности и плотности, что приводит к утрате эксплуатационных свойств. Бетонные элементы разрушаются посредством расслоения, рассыпания цементного камня, так как обычно наполнители демонстрируют более высокую стойкость к агрессивным влияниям.

Экономические потери, связанные со снижением прочности и долговечности, ухудшением эксплуатационных характеристик сооружений, часто очень высоки, поэтому защита бетона от коррозии – актуальный вопрос во всех сферах, где используется данный материал. Благодаря превентивным мерам, своевременному выявлению факторов коррозии и изучению особенностей протеканий процессов удается значительно сократить финансовые потери и значительно повысить надежность, продлить срок службы разных конструкций, зданий, объектов.

Виды коррозии

Коррозия бетона и железобетона – это разъедание строительных материалов под разрушающим воздействием химических, физических, биологических факторов при возникновении контактов с окружающей средой. Ввиду того, что в своем составе бетон имеет различные компоненты и цементный камень является наиболее уязвимым, он первым страдает от коррозийного процесса.

Виды вод, которые разрушают бетон: воды в трубах и траншеях, сточные, речные, грунтовые, морские. Самыми опасными считаются грунтовые воды, которые залегают возле промышленных предприятий, так как в них могут содержаться химические выбросы. Сточные воды также негативно влияют на материал из-за содержания химикатов. Воздействие газов можно включить в число опасных факторов.

Разрушения могут быть самыми разными и предполагать как воздействие на монолит извне, так и провоцировать изменение его структуры изнутри. При повышении влажности разъедание бетона ускоряется. Коррозировать может и арматура, расположенная внутри бетона, провоцируя разрушение железобетонных конструкций.

Основные категории коррозии бетона:

  1. Вымывание из цементного камня его компонентов.
  2. Негативное воздействие агрессивных веществ на монолит.
  3. Сочетание всех воздействий, которые меняют сам цементный камень.

Виды коррозии бетона:

  • Химическая – происходит под воздействием атмосферных осадков, содержащегося в воздухе углекислого газа. Так появляется газовая коррозия, актуальная при повышенной влажности.
  • Радиационная – зависит от величины ионизирующего излучения, объема цементного камня. Искажение кристаллической решетки минералов провоцирует расширение наполнителя, из-за чего появляются микротрещины, макротрещины, потом материал разрушается.
  • Физико-химическая – ее причиной является замерзание воды, которая попадает в поры бетона жидкой, при минусе замерзает и расширяется, распирает конструкцию и провоцирует появление трещин.
  • Биологическая – разъедается монолит под воздействием разнообразных биологических факторов (грибок, плесень, другие микроорганизмы).

Растворение составных частей цементного камня

Это разрушение происходит вследствие растворения (вымывания) компонентов цементного камня. На бетон воздействует вода и начинает растворяться гидроксид кальция, в процессе гидролиза появляется C3S и C2S, его объем растет и через 3 месяца занимает 10-15%, растворимость составляет 1.3 г/л.

Содержание гидроксида кальция из-за вымывания уменьшается до 1.1 г/л, распадаются гидросиликаты, разлагаются гидроалюминаты и гидроферриты кальция. Эти процессы провоцируют увеличение пористости материала, что означает и потерю прочности. Под воздействием воды (и особенно под давлением) процесс такой коррозии существенно ускоряется.

Но наиболее популярным методом борьбы с выщелачиванием гидроксида кальция традиционно считается применение плотных бетонов, в состав которых добавляют специальные компоненты, способствующие связыванию Са (ОН) в гидросиликат кальция, являющийся слаборастворимым соединением.

При взаимодействии цементного камня с содержащимися в воде кислотами

Этот тип коррозии можно наблюдать при влиянии на цементный монолит разных агрессивных веществ, в процессе соприкосновения с которыми появляется два типа соединений: аморфные массы и соли. Соли эти легко растворяются и вымываются водой. Аморфные массы практически не демонстрируют связующих свойств и бетон распадается под действием кислотной коррозии.

Кислотную коррозию можно наблюдать при воздействии любой кислоты, за исключением кремне-фтористо-водородной и поликремниевой. Опасные кислоты, взаимодействуя с гидроксидом кальция, способствуют созданию легкорастворимых солей СаС12 в том числе, что постоянно увеличивают размер CaSO4-2H2O. Это выглядит так: Са(ОН)2 + 2НС1 = СаС12 + 2Н2О Са(ОН)2 + H2SO4 = CaSO4.2H2O.

Под воздействием кислот разрушаются гидросиликаты, гидроалюминаты, гидроферриты, появляются легкорастворимые соли и иные аморфные массы. Защититься от слабых кислотных сред (на уровне pH = 4-6) можно с применением специального кислотостойкого материала (монолит окрашивают, покрывают пленкой и т.д.).

Коррозия бетона: виды, механизмы, способы защиты

Что это такое — коррозия бетона и железобетона? Почему в железобетонных конструкциях возникают коррозионные процессы? Какими способами можно предотвратить их развитие? В статье мы постараемся ответить на эти вопросы.

Разрушение железобетонной конструкции.

Что это такое

Коррозия бетона — процесс падения прочности или разрушения бетонных и железобетонных конструкций, связанный с агрессивным воздействием окружающей среды. Думается, читателю не нужно объяснять, как протекает коррозия металлических конструкций. С бетоном в общих чертах происходит то же самое: со временем он частично перерождается в другие материалы, обладающие совсем другими механическими свойствами.

Читать еще:  Водоцементное отношение для бетона - что это такое?

Уточним: от обычной ржавчины железобетонные конструкции, понятное дело, тоже страдают. В большинстве случаев армирование не отличается высокой коррозионной стойкостью.

Ржавление сказывается на прочности арматуры.

Виды и механизмы

Помните пословицу «где тонко, там и рвется»? Она в полной мере относится к деградации любых конструкционных материалов.

Железобетон — композит из нескольких видов сырья, различающихся механической прочностью и устойчивостью к разного вида внешним воздействиям.

Давайте разберем основные виды коррозии и механизмы их возникновения.

Несмотря на высокую плотность, бетон — материал пористый. Причина — в том, что схватывание цемента и последующая сушка раствора сопровождаются существенным уменьшением его объема.

Обратите внимание: поризованные газо- и пенобетон — отдельный разговор. В их случае поры создаются намеренно — введением в раствор пены или газообразующих компонентов (как правило, алюминиевого порошка). Цель — придание бетону максимальных теплоизоляционных качеств.

Увлажнение бетона с последующим неравномерным испарением воды приведет к постепенному движению воды через поры. В процессе движения та самая гашеная известь Ca(OH)2 будет постепенно вымываться; ну, а раз связующего в толще бетона становится меньше — его прочность падает.

Наиболее наглядно процесс вымывание демонстрируют высолы — белые разводы и наросты на поверхности бетона, остающиеся там, где он часто мокнет. Их наличие говорит о том, что конструкция стремительно утрачивает прочность.

Высолы на потолке погреба.

Разложение кислотами

Под воздействием кислот и их водных растворов в бетоне может протекать множество деструктивных процессов.

Разберем наиболее простые.

  • При воздействии кислот гашеная известь соединяется с атмосферной углекислотой с образованием нерастворимой соли и воды. Формула, описывающая реакцию, имеет вид Ca(OH)2 + CO2 = CaCO3 + H2O.

Казалось бы — чему огорчаться, если растворимое соединение кальция заменено более стабильным? Ведь процесс вымывания в этом случае должен полностью прекратиться. Не тут — то было: кристаллы CaCO3 не просто заполняют поры — они стремятся расширить, взломать их; в результате бетон начинает растрескиваться.

  • При избытке воды (проще говоря — во влажном бетоне) дальнейшее преобразование минералов приобретает вид CaCO3 + CO2 + H2O = Ca(HCO3)2. Полученный бикарбонат кальция снова растворим для воды; более того — слишком растворим: он стремительно вымывается, оставляя после себя поры и… падение конструкционной прочности.
  • В присутствии раствора соляной кислоты гашеная известь превращается в хлористый кальций: Ca(OH)2 + 2HCl = CaCl2 + 2H2O. И эта соль исключительно легко растворяется в воде; результат вполне предсказуем — опять-таки ослабление конструкции.

Сульфатное разложение

В условиях предприятий химической промышленности (в частности, производящих удобрения) довольно распространенным случаем является так называемая сульфатная коррозия бетона.

В результате взаимодействия с сульфатами гашеной извести и присутствующих в цементе алюминатов образуется, в частности, гидросульфоалюминат эттрингит (3СaO•Al2O3•3CaSO4•32H2O). Кристаллы в процессе роста вызывают значительные напряжения, существенно превышающие прочностные показатели цементного камня.

Ржавление арматуры

Здесь все просто и понятно: контакт низкоуглеродистых сталей с водой и воздухом приводит к образованию малопрочного Fe2O3 и более сложных окислов и солей. Армирование должно воспринимать нагрузки на растяжение; при падении прочности арматуры существенные нагрузки на изгиб приводят к появлению трещин и… ускоренному падению прочности уцелевшего армирования вследствие прямого контакта с водой и воздухом (см.также статью «Подпорные стены из бетона: технология возведения от профессионалов»).

Биологическое разложение

Последствия высокой влажности при температурах выше нуля общеизвестны: конструкции из кирпича, камня и бетона обживаются мхом и плесенью.

В результате разрушение идет двумя путями:

  1. Пресловутая известь и ее соединения служат грибку пищей.
  2. Накопление продуктов метаболизма в порах приводит к росту внутренних напряжений.

Грибок на бетонной стене.

Морозное разрушение

Представьте себе, что происходит с участком влажной бетонной конструкции при падении температуры ниже нуля.

  1. Вода в ее порах начинает кристаллизоваться.
  2. Лед, имеющий больший по сравнению с водой объем, стремится расширить поры. В конструкции появляются микротрещины; по мере их расширения к разрушению железобетона подключается коррозия арматуры.

Способы защиты

Итак, механизмы разрушения нами изучены. Возможна ли защита бетонных и железобетонных конструкций от коррозии? Могут ли соответствующие меры быть предприняты в домашних условиях, своими руками?

Для начала выясним, какими путями нам предстоит двигаться.

Виды коррозии бетонов

Химические виды коррозии бетона. Образование кристаллогидратов при взаимодействии воды и клинкерных минералов. Особенности магнезиальной, углекислотной, сульфатной и сероводородной коррозии. Физическое разрушение бетонов. Виды защиты от коррозии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Химические виды коррозии бетона

2. Коррозия выщелачивания

3. Коррозия второго вида. Магнезиальная коррозия

4. Углекислотная коррозия

5. Сульфатная коррозия

6 .Сероводородная коррозия

7. Физическая коррозия бетонов

8. Защита от коррозии

В настоящее время цемент является одним из важнейших строительных материалов. Его применяют для изготовления бетонов, бетонных и железобетонных изделий, строительных растворов, асбестоцементных изделий. Изготовляют его на крупных механизированных и автоматизированных заводах. Цемент начали производить в прошлом столетии. В начале 20-х годов XIX в. Е. Делиев получил обжиговое вяжущее из смеси извести с глиной и опубликовал результаты своей работы в книге, изданной в Москве в 1825 г. В 1856 г. был пущен первый в России завод портландцемента. Портландцемент является минеральным вяжущим веществом, составляющим основу большей части номенклатуры сухих строительных смесей в качестве самостоятельного вяжущего, в смешанных цементных вяжущих системах, в составе цементно-известковых вяжущих, а также различных полимерцементных композиций. Ценные и уникальные свойства портландцемента определяются его способностью при затворении водой образовывать пластичное тесто, со временем, самопроизвольно, за счёт химического взаимодействия в системе, превращающееся в камень. Способность к самоотвердеванию, образование прочного и долговечного камня, экологическая чистота, низкая химическая опасность, пожаровзрывобезопасность в сочетании с низкой стоимостью являются предпосылками для широкого практического применения портландцемента.

Бетоны и цементный камень, как его матричная часть, в эксплуатационных условиях подвержены коррозионному воздействию различных сред, особенно минерализованной воды в морских сооружениях (молы, причалы, эстакады со свайным основанием и железобетонным верхним строением, портовые конструкции и др.), минеральной кислоты при эксплуатации резервуаров, башен и других сооружений химической промышленности. На бетон оказывают коррозионное воздействие органические кислоты и биосфера, особенно при работе сооружений в торфяных грунтах, на предприятиях пищевой промышленности. Негативное влияние могут оказывать на состав и структуру цементного камня в бетонах щелочная среда, пресная вода, особенно водные растворы электролитов. В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др. Агрессивное воздействие оказывают также твердые, в основном высокодисперсные вещества, способные образовывать во влажных условиях прослойки из истинных и коллоидных растворов. Кроме химических реакций при контакте со средой возможны физические сорбционные процессы с поглощением из среды поверхностно-активных веществ (ПАВ), например серосодержащих полярных смол из нефтепродуктов, с физическим нарушением сплошности контактов в структуре и ускорением развития дефектов.

1. Химические виды коррозии бетона

Существуют три типа коррозии данного вида. В одном виде она встречается очень редко, так как в основном протекает в двух-трех видах:

1. В результате растворения водами малой жесткости камня, происходит коррозия. Это вода: дождевая, болотная, вода с горных рек или конденсат. Агрессивность воды уменьшается при появлении в ней кальция(Ca) и магния(Mg). Агрессивной является вода только с бикарбонатной щелочью менее 1,4-0,7 мг экв/л. С вымыванием Са (ОН)2 (при растворимости 1,2 г/л в расчете на СаО начинается) разрушение цементного камня, затем разрушаются клинкерные минералы. Выщелачивание 15-30% СаО является причиной уменьшения прочности на 50%.

2. Возникает в результате взаимодействия различных кислот, солей и цементного камня. Впоследствии обменных реакций образуются легкорастворимые соединения не имеющие прочности. Наиболее частой является углекислая кислота. Происходит образование углекислой кислоты в процессе растворения углекислого газа в воде. Для нейтрализации углекислой кислоты необходимо наличие в воде карбоната кальция, который и приводит равновесие в системе. Данная кислота не наносит вреда бетону, однако, если равновесие нарушено и кислоты больше, то она вполне может разрушить бетонную постройку по следующим реакциям:

Са (ОН)2 + Н2СО3 = СаСО3 + 2Н2О;

СаСО3 + Н2СО3 = Са (НСО3)2.

Так же, нередко встречается и магнезиальная коррозия, которая происходит при действии магнезиальных солей с цементным камнем. Например, в воде находится хлорид магния, который при взаимодействии с цементным камнем разрушает его.

3. При действии на цементный камень веществ, которые способны образовать увеличенные кристаллические соединения, возникает коррозия третьего вида. Коррозия может произойти в присутствии вод содержащих сульфат натрия, сульфат кальция и прочее.

2. Коррозия выщелачивания

Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН)2. Если концентрация в воде Са(ОН)2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесной.

Гидросиликаты и гидроалюминаты кальция имеют тем большую равновесную растворимость, чем выше их основность. Следовательно отщепление гидратов сначала происходит от высокоосновных гидратов, их основность при этом понижается, а устойчивость в данной среде повышается.Если концентрация гидрата окиси кальция в дальнейшем не будет понижаться, то процесс на этом остановится. Если же концентрация извести будет продолжать понижаться и станет ниже равновесной для вновь образовавшегося гидрата, то отщепление гидрата окиси кальция будет продолжаться вплоть до полного разложения гидросиликатов и гидроалюминатов, с образованием аморфных кремнезема и глинозема. Хотя последние и плохо растворимы в воде, однако они не обладают вяжущими свойствами — прочность и монолитность камня нарушаются.Эти процессы могут наблюдаться, если цементный камень омывается непрерывно обновляющейся водой или растворами солей, имеющими малую концентрацию Са(ОН)2, либо если Са(ОН)2 связываются содержащимися в растворе веществами в прочные малорастворимые или малодиссоциирующие химические соединения (кальция).Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок..Более агрессивными в смысле выщелачивания являются «мягкие» воды. Растворимость извести повышается в присутствии хлористого натрия. Значит минерализованные пластовые воды в принципе все агрессивны к цементному камню. Растворимость Са(ОН)2 повышается с ростом температуры. Значит перечисленные условия требуют применения низкоосновных цементов. Процесс выщелачивания снижает прочность бетона и может протекать до полного разрушения цементного камня.Для увеличении стойкости бетонов к коррозии первого вида увеличивают плотность бетонов и регулируют их состав ,уменьшая содержание основных соединений ,например, в карбонизированном бетоне растворимость СаСо3 в сто раз чем Са(ОН)2.

Читать еще:  Провод для прогрева бетона: виды, монтаж

3. Коррозия второго вида. Магнезиальная коррозия

Наиболее опасными средами при коррозии бетонов второго вида являются кислоты ,разрушение в которых сопровождается образованием рыхлых и легко растворимых новообразований .По растворимости продуктов коррозии бетонов кислоты принято делить на три группы. В первую группу входят сильные минеральные кислоты, такие как соляная, азотная и другии,При коррозии в этих кислотах на поверхности бетона образуется слой продуктов коррозии, состоящий из солей кальция, геля ,кремнекислоты, гидроксилов железа, и алюминия. Этот слой затрудняет доступ кислот в бетон. Во вторую группу входит серная,сернистая,фосфорная,и другие кислоты. при высоких концентрациях этих кислот продукты коррозии бетона содержатбольшое количество солей кальция, что повышает плотность новообразований и понижает скорость коррозии бетона.Третью группу составляют кислоты с низкой растворимостью кальциевых солей.К ним относятся : Щавелевая, фтористоводородная , кремнефтористоводородная

Коррозия второго вида происходит в растворах солей и кислот. Ко второй группе (коррозия II вида) относятся процессы, развивающиеся в бетоне под действием вод, содержащих вещества, вступающие в химические реакции с цементным камнем. Образующиеся при этом продукты реакций либо легкорастворимы и уносятся водой, либо выделяются на месте реакции в виде аморфных масс, не обладающих вяжущими свойствами. К этой группе могут быть отнесены, например, процессы коррозии, связанные с воздействием на бетон различных кислот, магнезиальных и других солей.Соли магния MgS04 и MgCl2, как правило, присутствуют в грунтовых водах. Большое количество этих солей содержится и в морской воде. При действии таких солей на бетон происходит взаимодействие с гидроксидом кальция.При малых концентрациях раствора MgCl2 реакционная емкость раствора низкая. Реакции с Са(ОН)2 протекают на поверхности бетона Выделяющийся при этом Mg(OH)2 образует на поверхности бетона пленку, которая даже способствует предохранению бетона от дальнейшего разрушения, т е. при малых концентрациях растворов скорость диффузии Са(СН)2 из внутренних слоев бетона достаточна, чтобы восполнить то количество, которое ушло на реакцию с солями. При длительном взаимодействии с такими растворами во внутренних слоях бетона развивается коррозия I вила [вынос Са(ОН)21 При больших концентрациях MgCi2 реакционная емкость раствора велика, количество Са(ОН)2 не достаточно для нейтрализации, поэтому раствор диффундирует внутрь бетона. коррозия бетон углекислотный сероводородный

При действии MgS04 на бетон «критическая» концентрация определяется соотношением между суммарной поверхностью взаимодействия цементного камня и количеством раствора. Если время соприкосновения раствора MgS04 с поверхностью цементного камня больше времени полного насыщения этого объема сульфатом кальция (CaS04), то гипс выпадает в осадок. Вместе с тем к такой коррозии могут привести и агрессивные сточные воды промышленных предприятий, а также грунтовые воды. При малой концентрации сернокислых солей их агрессивное воздействие проявляется следующим образом. При действии вод, содержащих, например, сульфат натрия Na2SO4, он вначале реагирует о Са(ОН)2 по схеме:

4. Углекислотная коррозия

По интенсивности взаимодействия с бетонами газовые среды подразделяются на три группы. Первую группу образуют газы , формирующие слаборастворимые или нерастворимые соли кальция, которые уплотняют поверхностные слои бетона. К этой группе относятся :углекислый газ, фтористый водород, фтористый кремний ,фтористый ангидрид. Однако нужно иметь в веду ,что в этом случае снижается щелочность бетона ,что увеличивает склонность к коррозии арматуры. Вторая группа газов образует в парах бетона соли увеличенного объема. К этой группе относятся сернистые соединения : SO4, SO2, H2S. Процессы коррозии в этих газах сопровождаются образованием сульфатов, аналогично коррозии в сульфатных водах. Третьей группе газов относится хлор , хлористый водород , оксиды азота и другие газы. Углекислый газ СО2, находящийся в воздухе, растворяется в воде, образуя угольную кислоту Н2СО3. При наличии в воде достаточного количества карбоната кальция СаСО, чтобы нейтрализовать угольную кислоту, Н2СО3 и СаСО3 должны находиться в равновесном состоянии: СаСО3 + Н2СО3 Са (НСО3)2. Эта угольная кислота не является агрессивной по отношению к цементному камню. Если количество углекислоты больше, чем равновесное, она становится агрессивной и способна разрушить цементный камень по реакциям:

Гидрокарбонат кальция легко растворяется и вымывается водой. Углекислотная коррозия происходит в результате действия растворов неорганических и органических кислот при их рН

Коррозия бетона: виды (сульфатная, биологическая), защита

КАЧЕСТВЕННО

БЫСТРО

SEO оптимизация

адаптивная верстка

Ремонт в регионах

  1. Главная
  2. Строительство
  3. Защита конструкций от коррозии
  4. Сульфатная и магнезиальная коррозия бетонов.

Сульфатная коррозия бетона состоит в том, что в жидкой фазе цемента всегда присутствуют и могут активно взаимодействовать с агрессивной средой ионы кальция (Са») и гидроокисла (ОН’). Имеются и другие ионы, но они обычно подавляются большим количеством извести.

Действие катионов среды оказывается наиболее агрессивным в том случае, если они способны образовывать с ионами гидроокисла плохо растворимые или малодиссоциированные соединения, удаляемые из сферы реакции в осадок, воду или газ. Сюда относятся катионы металлов, образующие слабые основания (гидраты окислов магния, цинка, алюминия, железа, меди, аммония).

Образование этих соединений типа Mg(OH)2 и других приводит к резкому понижению щелочности в бетоне и далее к растворению твердой извести, а затем к гидролизу устойчивых до этого силикатов и алюминатов.

Действие катионов натрия, калия, кальция и бария незначительно.
Анионы, образующие нерастворимые кальциевые соли (СО3«; С2О4» ; PO4«; SiO3«;), будут уплотнять поры бетона и, следовательно, играть положительную роль.
Особое положение занимают сульфатные анионы (SO4«). При известной концентрации они могут образовать с ионами кальция двуводный гипс, а вместе с высокоосноными алюминатами и гидросульфо-алюминат:
Са» + SO4 + 2Н20 — CaS04 • 2Н20;
3CaS04 + ЗСаО • Аl2O3 + 31Н20 — СаО •Аl2O3 • 3CaS04 • 31Н20.

Особенностью этих реакций является то, что и гипс и гидросульфо-алюминат кристаллизуются с большим количеством воды при значительном увеличении объема.

Если такое образование происходит в порах уже сложившейся структуры цементного камня, то создаются большие внутренние напряжения, приводящие бетон в конструкциях к характерному растрескиванию или отслаиванию поверхностных слоев.

Гидросульфоалюминат кристаллизуется в виде характерных игл, что послужило поводом назвать его «цементной бациллой».

Описанные разрушения бывают не всегда. Если образование гидросульфоалюмината протекает еще до формирования структуры бетона в жидкой фазе или в растворе присутствуют в значительном количестве ионы хлора, усиливающие растворимость алюминатов и сульфоалюмината, опасных напряжений может не возникать. Этим объясняется относительно невысокая агрессивность к цементному бетону морской воды, в которой содержится большое количество сульфатов, но еще большее количество хлоридов.

Если анионы хлора присутствуют в воде совместно с катионами магния, то последние, образуя с известью Mg(OH)2 и СаСl2, понижают концентрацию извести, а вместе с этим создают возможность существования высокоосновных гидроалюминатов и образование сульфоалюминатов в опасной форме.

Наличие в растворе хлористого кальция приводит к образованию неопасных хлоралюминатов и плохо растворимых хлорокисей кальция. На этом основаны специальные приемы введения в бетон большого количества хлоридов. При этом сильно понижается точка замерзания воды, что позволяет работать с бетоном в зимнее время, а самый бетон уплотняется (получается так называемый «холодный» бетон). Однако одновременно с этим было установлено, что в таком бетоне ионы хлора усиливают коррозию арматуры и поэтому широкого применения, особенно в армированных конструкциях, «холодный» бетон не получил.

Сульфатная коррозия бетона может усиливаться в том случае, если одновременно с катионами кальция цемента будут связываться и анионы гидроксила:
Са» + 20Н’ — Са (ОН)2.
Поэтому наиболее опасными являются сернокислые соли, образованные слабыми основаниями, особенно сульфат аммония
Са (ОН)2 + (NH4)2 S04 = CaS04 • 2Н20 + NH3.

При увеличении концентрации растворимых сульфатов сульфо ллюминатная коррозия переходит в гипсовую. Степень агрессивности, а также и скорость разрушения цементного камня при этом сильно возрастают.

При наличии значительных концентраций катионов магния происходит обменная реакция с разрушением структурной гидроокиси кальция и образование гипса:
Са (ОН)2 + MgS04 + 2Н20 = Mg (ОН)2 + CaS04 • 2Н2О.

Рассмотрение механизма сульфатной коррозии бетона позволяет понять и практикуемые мероприятия по ее смягчению:

  • а) возможное уменьшение количества извести (например, использованием белитовых, пуццолановых или глиноземистых цементов);
  • б) уменьшение содержания высокоосновных алюминатов, что и практикуется в так называемых сульфатостойких портландцементах, где допустимый процент С3А снижается до 5% вместо обычно имеющегося содержания в 8—12%;
  • в) введение большого процента гипса в состав цемента при помоле — в этом случае гидросулвфоалюминаты образуются в жидкой фазе еще до формирования структуры.
Ссылка на основную публикацию
Adblock
detector